Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unbounded multipliers on operator spaces


Authors: Hendrik Schlieter and Wend Werner
Journal: Proc. Amer. Math. Soc. 141 (2013), 1719-1733
MSC (2010): Primary 46L07; Secondary 46L08, 47D06
DOI: https://doi.org/10.1090/S0002-9939-2012-11478-9
Published electronically: November 26, 2012
MathSciNet review: 3020858
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce unbounded multipliers on operator spaces. These multipliers generalize both regular operators on Hilbert $ C^*$-modules and
(bounded) multipliers on operator spaces.


References [Enhancements On Off] (What's this?)

  • [BEZ02] David P. Blecher, Edward G. Effros, and Vrej Zarikian, One-sided $ M$-ideals and multipliers in operator spaces. I, Pacific J. Math. 206 (2002), no. 2, 287-319. MR 1926779 (2003h:46084)
  • [BJ83] Saad Baaj and Pierre Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les $ C\sp {\ast } $-modules hilbertiens, C. R. Math. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 21, 875-878. MR 715325 (84m:46091)
  • [Ble01] David P. Blecher, The Shilov boundary of an operator space and the characterization theorems, J. Funct. Anal. 182 (2001), no. 2, 280-343. MR 1828796 (2002d:46049)
  • [BLM04] David P. Blecher and Christian Le Merdy, Operator algebras and their modules--an operator space approach, London Math. Soc. Monogr. New Ser., vol. 30, 2004. MR 2111973 (2006a:46070)
  • [BN11] David P. Blecher and Matthew Neal, Metric characteriziations of isometries and of unital operator spaces and systems, Proc. Amer. Math. Soc. 139 (2011), no. 3, 985-998. MR 2745650
  • [BP01] David P. Blecher and Vern I. Paulsen, Multipliers of operator spaces, and the injective envelope, Pacific J. Math. 200 (2001), no. 1, 1-17. MR 1863404 (2002k:46150)
  • [Con81] Alain Connes, An analogue of the Thom isomorphism for crossed products of a $ C\sp {\ast } $-algebra by an action of $ {\bf R}$, Adv. Math. 39 (1981), no. 1, 31-55. MR 605351 (82j:46084)
  • [Dam04] Stéphane Damaville, Régularité des opérateurs quadratiquements bornés dans les modules de Hilbert, Preprintreihe des SFB 478 - Geometrische Strukturen in der Mathematik des Mathematischen Instituts der Westfälischen Wilhelms-Universität Münster 323 (2004).
  • [Dam07] -, Régularité d'opérateurs non bornés dans les modules de Hilbert, C. R. Math. Acad. Sci. Paris 344 (2007), no. 12, 769-772. MR 2340445
  • [EN00] Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., vol. 194, Springer, 2000. MR 1721989 (2000i:47075)
  • [ER00] Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. New Ser., vol. 23, 2000. MR 1793753 (2002a:46082)
  • [Har81] Lawrence A. Harris, A generalization of $ C\sp {\ast } $-algebras, Proc. Lond. Math. Soc. (3) 42 (1981), no. 2, 331-361. MR 607306 (82e:46089)
  • [HN12] Xu-Jian Huang and Chi-Keung Ng, An abstract characterization of unital operator spaces, J. Operator Theory 67 (2012), no. 1, 289-298. MR 2881544
  • [HQVK92] J. Hollevoet, J. Quaegebeur, and S. Van Keer, Stone's theorem in $ C\sp *$-algebras, Q. J. Math. Oxford Ser. (2) 43 (1992), no. 170, 227-233. MR 1164625 (94e:46103)
  • [Kus97] Johan Kustermans, The functional calculus of regular operators on Hilbert $ C\sp *$-modules revisited, Preprint (arXiv:funct-an/9706007v1), 1997.
  • [Lan95] E. Christopher Lance, Hilbert $ C\sp *$-modules: a toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., vol. 210, 1995. MR 1325694 (96k:46100)
  • [Pau02] Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., vol. 78, 2002. MR 1976867 (2004c:46118)
  • [Pis03] Gilles Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., vol. 294, 2003. MR 2006539 (2004k:46097)
  • [RW98] Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace $ C\sp *$-algebras, Math. Surveys Monogr., vol. 60, Amer. Math. Soc., 1998. MR 1634408 (2000c:46108)
  • [Sch09] Hendrik Schlieter, Unbeschränkte Multiplikatoren auf Operatorräumen, Dissertation, Westfälische Wilhelms-Universität Münster (arXiv:1007.3978v1), 2009.
  • [Wer99] Wend Werner, Small $ K$-groups for operator systems, unpublished manuscript, 1999.
  • [Wer04] -, Multipliers on matrix ordered operator spaces and some $ K$-groups, J. Funct. Anal. 206 (2004), no. 2, 356-378. MR 2021851 (2004k:46098)
  • [Wer07] Dirk Werner, Funktionalanalysis, sixth edition, Springer-Verlag, Berlin, 2007.
  • [WN92] Stanisław L. Woronowicz and Kazimierz Napiórkowski, Operator theory in the $ C\sp \ast $-algebra framework, Rep. Math. Phys. 31 (1992), no. 3, 353-371. MR 1232646 (94k:46123)
  • [Wor91] Stanisław L. Woronowicz, Unbounded elements affiliated with $ C\sp *$-algebras and noncompact quantum groups, Comm. Math. Phys. 136 (1991), no. 2, 399-432. MR 1096123 (92b:46117)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L07, 46L08, 47D06

Retrieve articles in all journals with MSC (2010): 46L07, 46L08, 47D06


Additional Information

Hendrik Schlieter
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einstein- strasse 62, D-48149 Münster, Germany
Email: hschlieter@uni-muenster.de

Wend Werner
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einstein- strasse 62, D-48149 Münster, Germany
Email: wwerner@math.uni-muenster.de

DOI: https://doi.org/10.1090/S0002-9939-2012-11478-9
Keywords: Operator spaces, $C^{*}$-modules, unbounded multipliers
Received by editor(s): July 22, 2010
Received by editor(s) in revised form: September 11, 2011
Published electronically: November 26, 2012
Additional Notes: The first author was partially supported by the SFB 478 – Geometrische Strukturen in der Mathematik at the Westfälische Wilhelms-Universität Münster, supported by the Deutsche Forschungsgemeinschaft.
Communicated by: Marius Junge
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society