Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Intrinsic volumes and linear contractions

Authors: Grigoris Paouris and Peter Pivovarov
Journal: Proc. Amer. Math. Soc. 141 (2013), 1805-1808
MSC (2010): Primary 52A20, 52A39, 52A40
Published electronically: December 13, 2012
MathSciNet review: 3020866
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that intrinsic volumes of a convex body decrease under linear contractions.

References [Enhancements On Off] (What's this?)

  • 1. R. Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces. I, Trans. Amer. Math. Soc. 288 (1985), no. 2, 661-678. MR 776397 (86c:52004)
  • 2. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics. MR 936419 (89b:52020)
  • 3. H. Groemer, On the mean value of the volume of a random polytope in a convex set, Arch. Math. (Basel) 25 (1974), 86-90. MR 0341286 (49:6036)
  • 4. G. Paouris and P. Pivovarov, A probabilistic take on isoperimetric-type inequalities, Adv. Math. 230 (2012), 1402-1422. MR 2921184
  • 5. R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • 6. V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Steklov Inst. Math. (1979), no. 2, i-v, 1-178, Cover-to-cover translation of Trudy Mat. Inst. Steklov 141 (1976). MR 530375 (80e:60052)
  • 7. S. J. Szarek, Spaces with large distance to $ l^n_\infty $ and random matrices, Amer. J. Math. 112 (1990), no. 6, 899-942. MR 1081810 (91j:46023)
  • 8. B. S. Tsirelson, A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II, Theory Prob. Appl. 30, 820-828. Translation of Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 772-779. MR 816291 (87i:62152)
  • 9. R. A. Vitale, Intrinsic volumes and Gaussian processes, Adv. in Appl. Probab. 33 (2001), no. 2, 354-364. MR 1842297 (2002h:60076)
  • 10. -, On the Gaussian representation of intrinsic volumes, Statist. Probab. Lett. 78 (2008), no. 10, 1246-1249. MR 2441470 (2009k:60090)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A20, 52A39, 52A40

Retrieve articles in all journals with MSC (2010): 52A20, 52A39, 52A40

Additional Information

Grigoris Paouris
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

Peter Pivovarov
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
Address at time of publication: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Received by editor(s): September 16, 2011
Published electronically: December 13, 2012
Additional Notes: The first-named author is supported by the A. Sloan Foundation, BSF grant 2010288, and the U.S. National Science Foundation, grant DMS-0906150
The second-named author held a Postdoctoral Fellowship award from the Natural Sciences and Engineering Research Council of Canada and was supported by the Department of Mathematics at Texas A&M University
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society