COMPLEMENTS OF INTERVALS
AND PREFRATTINI SUBALGEBRAS
OF SOLVABLE LIE ALGEBRAS

DAVID A. TOWERS

(Communicated by Kailash C. Misra)

Abstract. In this paper we study a Lie-theoretic analogue of a generalisation of the prefrattini subgroups introduced by W. Gaschütz. The approach follows that of P. Hauck and H. Kurzweil for groups by first considering complements in subalgebra intervals. Conjugacy of these subalgebras is established for a large class of solvable Lie algebras.

1. COMPLEMENTS OF SUBALGEBRA INTERVALS

Throughout, \(L \) will denote a finite-dimensional solvable Lie algebra over a field \(F \). For a subalgebra \(U \) of \(L \) we denote by \([U : L]\) the set of all subalgebras \(S \) of \(L \) with \(U \subseteq S \subseteq L \). We say that \([U : L]\) is complemented if, for any \(S \in [U : L] \), there is a \(T \in [U : L] \) such that \(S \cap T = U \) and \(\langle S, T \rangle = L \), where \(\langle S, T \rangle \) denotes the subalgebra of \(L \) generated by \(S \) and \(T \). Our objective is to study the set \(\Omega(U, L) = \{ S \in [U : L] : [S : L] \text{ is complemented} \} \), in particular, to show that for a large class of solvable Lie algebras \(L \), the minimal elements of this set, \(\Omega(U, L)_{\text{min}} \), are conjugate in \(L \). The development initially follows closely that of [3], but later the theory diverges from that for groups. For example, when \(L^2 \) is nilpotent, \(\Omega(U, L)_{\text{min}} \) contains just one element. When \(L^2 \) is not nilpotent \(\Omega(U, L)_{\text{min}} \) can contain more than one element but, unlike the group-theoretic case, these elements may not be conjugate. In the second section these ideas are used to introduce the concept of prefrattini subalgebras of \(L \); these were employed in [5] to study complemented solvable Lie algebras.

We denote by \([U : L]_{\text{max}} \) the set of maximal subalgebras in \([U : L] \), that is, the set of maximal subalgebras of \(L \) containing \(U \). If \(L = A + B \) where \(A \) and \(B \) are subalgebras of \(L \) and \(A \cap B = 0 \), we will write \(L = A \oplus B \).

Lemma 1.1. If \(S \in \Omega(U, L) \), \(S \neq L \), then \(S = \bigcap\{ M : M \in [S : L]_{\text{max}} \} \).

Proof. Put \(T = \bigcap\{ M : M \in [S : L]_{\text{max}} \} \). Then \([S : L]\) is complemented, since \(S \in \Omega(U, L) \), and so \(T \) has a complement \(C \) in \([S : L]\). If \(C \neq L \), then \(C \subseteq M \) for some \(M \in [S : L]_{\text{max}} \). But then \(\langle T, C \rangle \subseteq M \), contradicting the fact that \(C \) is a complement of \(T \) in \([S : L]\). Hence \(C = L \) and \(S = T \cap C = T \cap L = T \), as required. \(\square \)
Lemma 1.2. If I is an ideal of L and $S \in \Omega(U, L)$, then $S + I \in \Omega(U, L)$.

Proof. Let $B \in [S + I : L] \subseteq [S : L]$. Since $S \in \Omega(U, L)$, B has a complement D in $[S : L]$; that is, $B \cap D = S$ and $\langle B, D \rangle = L$. Put $C = D + I$. Then $\langle B, C \rangle = L$ and $B \cap C = B \cap (D + I) = B \cap D + I = S + I$, whence C is a complement for B in $[S + I : L]$ and $S + I \in \Omega(U, L)$. \hfill \Box

Lemma 1.3. Let A be a minimal ideal of L and let M be a complement of A in L containing U. Then $\Omega(U, M) = \{ S \in \Omega(U, L) : S \subseteq M \}$. In particular $\Omega(U, M)_{\text{min}} = \{ S \in \Omega(U, L)_{\text{min}} : S \subseteq M \}$.

Proof. Note that since L is solvable, M is a maximal subalgebra of L and $L = A \oplus M$. Suppose first that $S \in \Omega(U, L)$ with $S \subseteq M$. Then $S + A \in \Omega(U, L)$ by Lemma 1.2. The interval $[S : M]$ is lattice isomorphic to $[S + I : L]$ and so is complemented. Hence $S \in \Omega(U, M)$.

Conversely, let $S \in \Omega(U, M)$. Then $[S : M]$ is complemented. We need to show that $S \in \Omega(U, L)$, that is, that $[S : L]$ is complemented. Let $B \in [S : L]$. Then $B \cap M \in [S : M]$, so there is a subalgebra $D \in [S : M]$ such that $\langle B \cap M, D \rangle = M$ and $B \cap D = B \cap M \cap D = S$.

If $B \not\subseteq M$, then M is a proper subalgebra of $\langle B, D \rangle$. But M is a maximal subalgebra of L, and so $\langle B, D \rangle = L$ and D is a complement of B in $[S : L]$. Hence $[S : L]$ is complemented.

If $B \subseteq M$, put $C = D + A$. Then

$$L = A \oplus M \subseteq \langle B, A \rangle + \langle B, D \rangle \subseteq \langle B, D + A \rangle = \langle B, C \rangle,$$

so $\langle B, D + A \rangle = L$. Also

$$B \cap C = B \cap (D + A) = B \cap M \cap (D + A) = B \cap (D + M \cap A) = B \cap D = S,$$

yielding that C is a complement of B in $[S : L]$ and $[S : L]$ is complemented. \hfill \Box

Lemma 1.4. Let A be a minimal ideal of L and let $S \in \Omega(U, L)_{\text{min}}$ with $A \not\subseteq S$. Then there is an $M \in [S : L]_{\text{max}}$ such that $A \not\subseteq M$.

Proof. This follows easily from Lemma 1.3. \hfill \Box

Lemma 1.5. Let A be a minimal ideal of L. Then the following are equivalent:

(i) $A \not\subseteq S$ for some $S \in \Omega(U, L)_{\text{min}}$;

(ii) $A \not\subseteq M$ for some $M \in [U : L]_{\text{max}}$; and

(iii) for every $S \in \Omega(U, L)_{\text{min}}$ there is a complement of A in L containing S.

Proof. (i) \Rightarrow (ii): This follows from Lemma 1.4.

(ii) \Rightarrow (iii): Suppose that $A \not\subseteq M$ for some $M \in [U : L]_{\text{max}}$. Then $L = A \oplus M$. Let $S \in \Omega(U, L)_{\text{min}}$.

Suppose first that $A \subseteq S$. Then $S = A \oplus M \cap S$ and $M \cap S \cong S/A$, so the interval $[S : L]$ is lattice isomorphic to $[M \cap S : M]$. It follows that $M \cap S \in \Omega(U, M)$. But Lemma 1.3 now gives that $M \cap S \in \Omega(U, L)$, contradicting the minimality of S.

Hence $A \not\subseteq S$ and Lemma 1.4 gives a complement of A containing S.

(iii) \Rightarrow (i): This is trivial. \hfill \Box
Lemma 1.6. If A is an ideal of L and $S \in \Omega(U,L)_{\min}$, then

$$S + A \in \Omega(U + A,L)_{\min}.$$

Proof. It suffices to show that $(S + A)/A \in \Omega((U + A)/A,L/A)_{\min}$ and so we may suppose that A is a minimal ideal of L. The result is clear if $A \subseteq S$, since then $U + A \subseteq S$. So suppose that $A \not\subseteq S$.

Then there is a complement M of A in L containing S, by Lemma 1.5, and $L = A \oplus M$. Moreover, $S + A \in \Omega(U + A,L)$. Choose $C \in \Omega(U + A,L)_{\min}$ such that $C \subseteq S + A$. Then $U \subseteq M \cap C \subseteq S \subseteq M$ and the interval $[M \cap C : M]$ is lattice isomorphic to $[C : L]$. It follows that $M \cap C = \Omega(U,M)$ and so $M \cap C = \Omega(U,L)$, by Lemma 1.3. But $S \in \Omega(U,L)_{\min}$, which yields that $M \cap C = S$; that is, $C = S + A$. \qed

At this point the theory starts to diverge from that for groups. We say that L is completely solvable if L^2 is nilpotent. For these algebras $\Omega(U,L)_{\min}$ takes on a particularly simple form.

Theorem 1.7. Let L be completely solvable and let U be a subalgebra of L. Then $\Omega(U,L)_{\min} = \{\phi(U,L)\}$. In particular, if $U = 0$, then $\Omega(U,L)_{\min} = \{\phi(L)\}.$

Proof. Let $B \in \Omega(U,L)_{\min}$, $C = \phi(U,L)$. Then $\phi(U,L) \subseteq B$ and so $C \subseteq B$, by Lemma 1.1. We now use induction on the dimension of L. Suppose first that there is a minimal ideal A of L with $A \subseteq C$. Then $B/A \in \Omega((U + A)/A,L/A)_{\min}$, by Lemma 1.6 and so $B/A = \phi((U + A)/A,L/A)$, by the inductive hypothesis. From this it is clear that $B = C$.

So suppose now that no such minimal ideal exists. Then $\phi(L) = 0$ and so L is complemented, by [4 Theorem 1]. Thus there is a subalgebra V such that $\langle C, V \rangle = L$ and $C \cap V = 0$. It follows that $\langle C, U + V \rangle = L$ and $C \cap (U + V) = U + C \cap V = U$, whence $C \in [U : L]$ and $[C : L]$ is complemented. Thus $C \in \Omega(U,L)$ and the minimality of B yields that $B = C$. \qed

If L is not completely solvable, then $\Omega(U,L)_{\min}$ can contain more than one element as we shall see in the next section. However, we do have a conjugacy result in some cases. First we need to consider inner automorphisms of L. Let $x \in L$ and let $ad \, x$ be the corresponding inner derivation of L. If F has characteristic zero, suppose that $(ad \, x)^n = 0$ for some n; if F has characteristic p, suppose that $x \in I$, where I is a nilpotent ideal of L of class less than p. Put

$$\exp(ad \, x) = \sum_{r=0}^{\infty} \frac{1}{r!}(ad \, x)^r.$$

Then $\exp(ad \, x)$ is an automorphism of L. We shall call the group $I(L)$ generated by all such automorphisms the group of inner automorphisms of L. More generally, if B is a subalgebra of L we denote by $I(L:B)$ the group of automorphisms of L generated by the $\exp(ad \, x)$ with $x \in B$.

If B is a subalgebra of L, the centraliser of B in L is $C_L(B) = \{x \in L : [x,B] = 0\}$. We define the nilpotent residual to be $L^\infty = \bigcap_{i=1}^{\infty} L^i$, where the L^i are the terms of the lower central series for L. Then we have conjugacy for the following metanilpotent Lie algebras.
Theorem 1.8. Suppose that L is a solvable Lie algebra over a field F of characteristic p, and suppose further that L^∞ has nilpotency class less than p. Let U be a subalgebra of L. Then the elements of $\Omega(U, L)_{\min}$ are conjugate under $\mathcal{I}(L : L^\infty)$.

Proof. We use induction on the dimension of L. It is clearly true if L has dimension one, so suppose it holds for such algebras with dimension smaller than that of L. We can assume that $L^\infty \neq 0$. Let $S_1, S_2 \in \Omega(U, L)_{\min}$ and let A be a minimal ideal of L with $A \subseteq L^\infty$. Then $(S_1 + A)/A, (S_2 + A)/A \in \Omega((U + A)/A, L/A)_{\min}$, by Lemma 1.6 and so $(S_1 + A)/A$ and $(S_2 + A)/A$ are conjugate under $\mathcal{I}(L/A : L^\infty/A)$, by the inductive hypothesis.

If $A \subseteq S_1$, then $A \subseteq S_2$, by Lemma 1.5 and there is an $x \in L^\infty$ such that $S_1 \exp(\text{ad } x) = S_2$; that is, S_1 and S_2 are conjugate under $\mathcal{I}(L : L^\infty)$.

So suppose that $A \nsubseteq S_1$. Then there are complements M_1 and M_2 of A in L with $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$, by Lemma 1.5. Put $C = C_{M_1}(A)$, which is an ideal of L. If $C = 0$, then $C_L(A) = A$ and there is $a \in A$ such that $M_2 \exp(\text{ad } a) = M_1$, by [2, Theorem 1.1], whence $S_2 \exp(\text{ad } a) \subseteq M_2 \exp(\text{ad } a) = M_1$.

If $C \neq 0$, then $(S_1 + C)/C$ and $(S_2 + C)/C$ are conjugate under $\mathcal{I}(L/C : (L^\infty + C)/C)$, by the inductive hypothesis. It follows that there is an $x \in L^\infty$ such that $S_2 \exp(\text{ad } x + C) \subseteq S_1 + C \exp(\text{ad } a) \subseteq M_1$, which gives $S_2 \exp(\text{ad } x) \subseteq M_1$. Now $L = A \oplus M_1$, so $L^\infty \subseteq A \oplus M_1^\infty$. Moreover, $[A, L^\infty] = 0$ since L is nilpotent, so M_1^∞ is an ideal of L. Put $x = a + b$, where $a \in A$, $b \in M_1^\infty$. Then, for each $s_2 \in S_2$, we have $s_2 + s_2 \exp(\text{ad } x) = M_1$, which gives $s_2 + s_2 \exp(\text{ad } a) \subseteq M_1$.

Thus, again we have that $S_2 \exp(\text{ad } a) \subseteq M_1$ for some $a \in A$.

So $S_1, S_2 \exp(\text{ad } a) \subseteq M_1$ for some $a \in A$. Now $U \subseteq S_1 \subseteq M_1$ and $U \exp(\text{ad } a) \subseteq S_2 \exp(\text{ad } a) \subseteq M_1$, so, for each $u \in U$, $u + [a, u] \in M_1$, which gives $[a, u] \in A \cap M_1 = 0$; that is, $a \in C_L(U)$ and $U \exp(\text{ad } a) = U$.

Thus $S_2 \exp(\text{ad } a) \in \Omega(U \exp(\text{ad } a), L)_{\min} = \Omega(U, L)_{\min}$.

But now Lemma 1.3 yields that $S_1, S_2 \exp(\text{ad } a) \in \Omega(U, M_1)_{\min}$, and the required conjugacy of S_1 and S_2 follows from the inductive hypothesis. \qed

2. U-prefrattini subalgebras

Let

$$0 = A_0 \subset A_1 \subset \ldots \subset A_n = L$$

be a fixed chief series for L. We say that A_i/A_{i-1} is a Frattini chief factor if $A_i/A_{i-1} \subseteq \phi(L/A_{i-1})$; it is complemented if there is a maximal subalgebra M of L such that $L = A_i + M$ and $A_i \cap M = A_{i-1}$. When L is solvable it is easy to see that a chief factor is Frattini if and only if it is not complemented. This can be generalised as follows.

The factor algebra A_i/A_{i-1} is called a U-Frattini chief factor if

$$A_i \subseteq \phi(U + A_{i-1}, L)$$

or if $U + A_{i-1} = L$.

that is, if every maximal subalgebra of L which contains U and A_{i-1} also contains A_i. If A_i/A_{i-1} is not a U-Frattini chief factor there is an $M \in [U + A_{i-1} : L]_{\text{max}}$ for which $A_i \not\subseteq M$; that is, M is a complement of the chief factor A_i/A_{i-1}. We have a sharpened form of the Jordan-Hölder Theorem in which the U-Frattini chief factors correspond. First we need a lemma.
Lemma 2.1. Let A_1, A_2 be distinct minimal ideals of the solvable Lie algebra L. Then there is a bijection
\[\theta : \{ A_1, (A_1 + A_2)/A_1 \} \to \{ A_2, (A_1 + A_2)/A_2 \} \]
such that corresponding chief factors are isomorphic as L-modules and U-Frattini chief factors correspond to one another.

Proof. Clearly we can assume that $U \neq L$. Put $A = A_1 \oplus A_2$. Suppose first that A_1 is a U-Frattini chief factor. Then $A_1 \subseteq \phi(U, L)$. Thus $A \subseteq \phi(U + A_2, L)$ and A/A_2 is a U-Frattini chief factor. If A/A_1 is also a U-Frattini chief factor, then $A \subseteq \phi(U + A_1, L)$, which yields that $A \subseteq \phi(U, L)$, and all four factors are U-Frattini. In this case we can choose θ so that $\theta(A_1) = A_2/A_2$ and $\theta(A/A_1) = A_2$. If A/A_1 is not a U-Frattini chief factor, then neither is A_2, by the same argument as above, and so the same choice of θ suffices and likewise if none of the factors are U-Frattini chief factors.

The remaining case is where A_1 and A_2 are not U-Frattini chief factors but A/A_2 is. The fact that A/A_2 is a U-Frattini chief factor means that every maximal subalgebra containing U and A_2 also contains A, and so contains A_1. But, since A_1 is not a U-Frattini chief factor, there is a maximal subalgebra M containing U but not containing A_1. It follows that $A_2 \not\subseteq M$. Thus M complements both A_1 and A_2 in L. Put $C = A \cap M$. Then $L/A_1 \cong M$ and this isomorphism maps the set of maximal subalgebras of L/A_1 which contain $(U + A_1)/A_1$ onto the set of maximal subalgebras of M which contain U. Since A/A_2 is a U-Frattini chief factor, every maximal subalgebra of L containing $U + A_2$ contains A, so every maximal subalgebra of M which contains U also contains C. It follows that every maximal subalgebra of L which contains $U + A_1$ also contains $C + A_1$; that is, A/A_1 is a U-Frattini chief factor of L. So we can choose θ so that $\theta(A_1) = A_2$ and $\theta(A/A_1) = A/A_2$. \hfill \Box

Theorem 2.2. Let
\begin{align}
(2) & \quad 0 < A_1 < \ldots < A_n = L, \\
(3) & \quad 0 < B_1 < \ldots < B_n = L
\end{align}
be chief series for the solvable Lie algebra L. Then there is a bijection between the chief factors of these two series such that corresponding factors are isomorphic as L-modules and such that the U-Frattini chief factors in the two series correspond.

Proof. These two series have the same length by a version of the Jordan–Hölder Theorem. We use induction on n. The result is clearly true if $n = 1$. So let $n > 1$ and suppose that the result holds for all solvable Lie algebras with chief series of length $\leq n - 1$. If $A_1 = B_1$, then applying the inductive hypothesis to L/A_1 gives a suitable bijection between the factors above A_1, and then we can map A_1 to B_1 and we have the result.

So suppose that A_1 and B_1 are distinct and put $A = A_1 \oplus B_1$. Then A/A_1 and A/B_1 are chief factors of L and there are chief series of the form
\begin{align}
(4) & \quad 0 < A_1 < A < C_3 < \ldots < C_n = L, \\
(5) & \quad 0 < B_1 < A < C_3 < \ldots < C_n = L.
\end{align}
Define an equivalence relation on the chief series of L by saying that two such series are equivalent if there is a bijection between their chief factors satisfying...
the requirements of the theorem. Since series (2) and (4) have a minimal ideal in common, they are equivalent. Similarly, series (3) and (5) are equivalent. Moreover, since series (4) and (5) coincide above \(A \) they are also equivalent, by Lemma 2.1. Hence the series (2) and (3) are equivalent, as required. \(\square \)

We define the set \(\mathcal{I} \) by \(i \in \mathcal{I} \) if and only if \(A_i/A_{i-1} \) is not a \(U \)-Frattini chief factor of \(L \). For each \(i \in \mathcal{I} \) put

\[
\mathcal{M}_i = \{ M \in [U + A_{i-1}, L]_{\text{max}} : A_i \not\subseteq M \}.
\]

Then \(B \) is a \(U \)-prefrattini subalgebra of \(L \) if

\[
B = \bigcap_{i \in \mathcal{I}} M_i \text{ for some } M_i \in \mathcal{M}_i.
\]

If \(U = 0 \) we will refer to \(B \) simply as a prefrattini subalgebra of \(L \).

The subalgebra \(B \) avoids \(A_i/A_{i-1} \) if \(B \cap A_i = B \cap A_{i-1} \); likewise, \(B \) covers \(A_i/A_{i-1} \) if \(B + A_i = B + A_{i-1} \). Then we have the following important property of \(U \)-prefrattini subalgebras of \(L \).

Lemma 2.3. If \(B \) is a \(U \)-prefrattini subalgebra of \(L \), then it covers all \(U \)-Frattini chief factors of \(L \) in (1) and avoids the rest.

Proof. Let \(B \) be a \(U \)-prefrattini subalgebra of \(L \) and let \(A_i/A_{i-1} \) be a chief factor of \(L \). If it is a \(U \)-Frattini chief factor, then either \(A_i \subseteq \phi(U + A_{i-1}, L) \) or else \(U + A_{i-1} = L \). In the former case, every maximal subalgebra of \(L \) that contains \(U + A_{i-1} \) also contains \(A_i \), and so \(A_i \not\subseteq B \). In either case, therefore, \(B \) covers \(A_i/A_{i-1} \). If it is not a \(U \)-Frattini chief factor we have \(B \subseteq M_i \) where \(L = A_i + M_i \) and \(A_i \cap M_i = A_{i-1} \). Hence \(B \cap A_i = B \cap M_i \cap A_i = B \cap A_{i-1} \subseteq B \cap A_i \), and so \(B \) avoids \(A_i/A_{i-1} \). \(\square \)

The next four results are dedicated to showing how the \(U \)-prefrattini subalgebras relate to the material in the previous section. The first lemma is helpful when trying to calculate \(U \)-prefrattini subalgebras.

Lemma 2.4. Let \(B \) be a \(U \)-prefrattini subalgebra of \(L \). Then

\[
\dim B = \sum_{i \in \mathcal{I}} (\dim A_i - \dim A_{i-1});
\]

in particular, all \(U \)-prefrattini subalgebras of \(L \) have the same dimension.

Proof. We use induction on \(\dim L \). The result is clear if \(L \) is abelian, so suppose it holds for Lie algebras of smaller dimension than \(L \). It is easy to check that \((B + A_1)/A_1 \) is a \(((U + A_1))/A_1 \)-prefrattini subalgebra of \(L/A_1 \) and so

\[
\dim \left(\frac{B + A_1}{A_1} \right) = \sum_{i \in \mathcal{I}, i \neq 1} (\dim A_i - \dim A_{i-1}),
\]

by the inductive hypothesis. If \(A_1/A_0 \) is a \(U \)-Frattini chief factor of \(L \), then \(B \) covers \(A_1/A_0 \), whence \(B = B + A_1 \) and

\[
\dim B = \dim A_1 + \dim \left(\frac{B + A_1}{A_1} \right) = \sum_{i \in \mathcal{I}} (\dim A_i - \dim A_{i-1}).
\]
If A_1/A_0 is not a U-Frattini chief factor of L, then B avoids A_1/A_0, whence $B \cap A_1 = 0$ and

$$\dim B = \dim \left(\frac{B + A_1}{A_1} \right) = \sum_{i \in I} (\dim A_i - \dim A_{i-1}).$$

Let $\Pi(U, L)$ be the set of U-prefrattini subalgebras of L.

Lemma 2.5. $\Pi(U, L) \subseteq \Omega(U, L)$.

Proof. (i) We use induction on $\dim L$. The result is clear if L is abelian, so suppose it holds for Lie algebras of dimension less than that of L. Let $B \in \Pi(U, L)$. Then

$$\frac{B + A_1}{A_1} \in \Pi \left(\frac{U + A_1}{A_1}, \frac{L}{A_1} \right) \subseteq \Omega \left(\frac{U + A_1}{A_1}, \frac{L}{A_1} \right),$$

whence $B + A_1 \in \Omega(U, L)$. If $A_1 \subseteq B$ we have $B \in \Omega(U, L)$. So suppose that $A_1 \not\subseteq B$. Then B does not cover A_1/A_0, so A_1/A_0 is not a U-Frattini chief factor of L. It follows that $1 \in I$, and so there is a maximal subalgebra M of L with $B \subseteq M$ and $A_1 \not\subseteq M$. But now $L = A_1 \oplus M$ and the intervals $[B + A_1 : L]$ and $[B : M]$ are lattice isomorphic, which yields that $[B : M]$ is complemented. It follows from Lemma 1.3 that $B \in \Omega(U, L)$ again. \hfill \square

Lemma 2.6. $\Omega(U, L)_{\min} \subseteq \Pi(U, L)$.

Proof. Let $B \in \Omega(U, L)_{\min}$ and let A_i/A_{i-1} be a chief factor of L. By Lemma 1.6

$$\left(\frac{B + A_{i-1}}{A_{i-1}} \right) \in \Omega \left(\frac{U + A_{i-1}}{A_{i-1}}, \frac{L}{A_{i-1}} \right)_{\min}.$$

We now apply Lemma 1.5 to the minimal ideal A_i/A_{i-1} of L/A_{i-1}. If A_i/A_{i-1} is a U-Frattini chief factor, then it does not have a complement in L/A_{i-1} and Lemma 1.5 gives that $A_i \subseteq B + A_{i-1}$, whence $A_i + B = A_{i-1} + B$ and B covers A_i/A_{i-1}.

If A_i/A_{i-1} is not a U-Frattini chief factor, then it has a complement M_i/A_{i-1} in L/A_{i-1} and Lemma 1.6 gives that it has such a complement containing $(B + A_{i-1})/A_{i-1}$; that is, $L = M_i + A_i$, $M_i \cap A_i = A_{i-1}$ and $B + A_{i-1} \subseteq M_i$. But now $B \cap A_i \not\subseteq B \cap A_{i-1} = (B + A_{i-1}) \cap A_i \subseteq M_i \cap A_i = A_{i-1}$. It follows that $B \cap A_i = B \cap A_{i-1}$ and B avoids A_i/A_{i-1}. Clearly $M_i \in M_i$ and $B \subseteq C = \bigcap_{i \in I} M_i \in \Pi(U, L)$. But B covers or avoids the same chief factors of (1) as C, so the proof of Lemma 2.4 shows that $\dim B = \dim C$. It follows that $B = C \in \Pi(U, L)$. \hfill \square

Putting the previous three lemmas together yields the following result.

Theorem 2.7. $\Omega(U, L)_{\min} = \Pi(U, L)$.

Notice that, in particular, the above result shows that the definition of U-prefrattini subalgebras does not depend on the choice of chief series.

Corollary 2.8. If A is an ideal of L and $S \in \Pi(U, L)$, then

$$(S + A)/A \in \Pi((U + A)/A, L/A).$$

Proof. This follows from Theorem 2.7 and Lemma 1.6. \hfill \square
Corollary 2.9. For every solvable Lie algebra L,

$$\phi(U, L) = \bigcap_{B \in \Pi(U, L)} B.$$

Proof. Put $P = \bigcap_{B \in \Pi(U, L)} B$. Then $\phi(U, L) \subseteq P$, by Theorem 2.7 and Lemma 1.1. Let $M \in [U, L]_{\text{max}}$. There is an i such that $A_{i-1} \subseteq M$ but $A_i \nsubseteq M$ ($1 \leq i \leq n$). Then A_i/A_{i-1} is not a U-Frattini chief factor of L, so $i \in I$ and $M \in \mathcal{M}_i$. Thus there is $B \in \Pi(U, L)$ such that $B \subseteq M$, whence $P \subseteq M$. Hence $P \subseteq \phi(U, L)$. □

Corollary 2.10. Let L be completely solvable and let U be a subalgebra of L. Then $\Pi(U, L) = \{\phi(U, L)\}$. In particular, $\Pi(0, L) = \{\phi(L)\}$.

Proof. This follows from Theorem 2.7 and Theorem 1.7. □

Corollary 2.11. Suppose that L is a solvable Lie algebra over a field F of characteristic p, and suppose further that L^∞ has nilpotency class less than p. Let U be a subalgebra of L. Then the elements of $\Pi(U, L)$ are conjugate under $I(L : L^\infty)$.

Proof. This follows from Theorem 2.7 and Theorem 1.8. □

If L^2 is not nilpotent, then $\Pi(U, L)$ can contain more than one element, as the following example shows.

Example 2.1. Let F be a field of characteristic p (perfect if $p = 2$), and $L = (\bigoplus_{i=0}^{p-1} Fe_i) \oplus Fs \oplus Fx$ with $[e_i, c] = e_i$, $[e_i, s] = e_i+1$ for $i = 0, \ldots, p-2$, $[e_{p-1}, s] = 0$, $[e_i, x] = ie_i-1$ for $i = 0, \ldots, p-1$ and $e_{-1} = 0$, $[s, x] = c$, and all other products are zero.

Put $A_0 = 0$, $A_1 = \bigoplus_{i=0}^{p-1} Fe_i$, $A_2 = A_1 \oplus Fs$, $A_3 = A_2 \oplus Fs$, $A_4 = L$. Then $0 = A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 = L$

is a chief series for L in which A_2/A_1 is the only Frattini chief factor. It is, therefore, straightforward to see that the prefrattini subalgebras of L are the one-dimensional subalgebras $F(\alpha c + a)$, where $a \in A_1 = L^\infty$, $\alpha \in F$.

Note that these are all conjugate under inner automorphisms of the form $1 + \text{ad} a$. This is not always the case, however. For, if B is a faithful irreducible L-module and we form $X = B \oplus L$, where $B^2 = 0$ and L acts on B under the given L-module action, then the prefrattini subalgebras are still of the form $F(\alpha c + a)$ where $a \in A_1$. However, B is the unique minimal ideal of L and these subalgebras are not conjugate under inner automorphisms of the form $1 + \text{ad} b$, $b \in B$. Since B is the nilradical of X, defining other inner automorphisms is problematic. Note that $X^\infty = B + A_1$, which is not nilpotent.

Acknowledgement

The author is grateful to the referee for correcting an error in the original version of Lemma 2.1.

References

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England

E-mail address: d.towers@lancaster.ac.uk