MINIMAL C^1-DIFFEOMORPHISMS OF THE CIRCLE WHICH ADMIT MEASURABLE FUNDAMENTAL DOMAINS

HIROKI KODAMA AND SHIGENORI MATSUMOTO

(Communicated by Bryna Kra)

Abstract. We construct, for each irrational number α, a minimal C^1-diffeomorphism of the circle with rotation number α which admits a measurable fundamental domain with respect to the Lebesgue measure.

1. Introduction

The concept of ergodicity is important not only for measure-preserving dynamical systems but also for systems which admit a natural quasi-invariant measure. Given a probability space (X, μ) and a transformation T of X, μ is said to be quasi-invariant if the push forward $T_\ast \mu$ is equivalent to μ. In this case T is called ergodic with respect to μ, if a T-invariant Borel subset in X is either null or conull.

A diffeomorphism of a differentiable manifold always leaves the Riemannian volume (also called the Lebesgue measure) quasi-invariant, and one can ask if a given diffeomorphism is ergodic with respect to the Lebesgue measure (below ergodic for short) or not. Answering a question of A. Denjoy [D], A. Katok (see for instance Chap. 12.7, p. 419, [KH]) and independently M. Herman (Chap. VII, p. 86, [H]) showed that a C^1-diffeomorphism of the circle with derivative of bounded variation is ergodic provided its rotation number is irrational. Contrarily Oliveira and da Rocha [OR] constructed a minimal C^1-diffeomorphism of the circle which is not ergodic.

At the opposite extreme of the ergodicity lies the concept of measurable fundamental domains. Given a transformation T of a standard probability space (X, μ) leaving μ quasi-invariant, a Borel subset C of X is called a measurable fundamental domain if $T^n C$ $(n \in \mathbb{Z})$ is mutually disjoint and the union $\bigcup_{n \in \mathbb{Z}} T^n C$ is conull. In this case any Borel function on C can be extended to a T-invariant measurable function on X, and an ergodic component of T is just a single orbit. The purpose of this paper is to show the following theorem.
Theorem 1.1. For any irrational number α, there is a minimal C^1-diffeomorphism of the circle with rotation number α which admits a measurable fundamental domain with respect to the Lebesgue measure.

Sections 2, 3 and 4 are devoted to the proof of Theorem 1.1. Let us mention an important remark and a further question.

Remark 1.2. In 2.1 of [DKN2], it is indicated how to construct examples of C^1-actions of the n-adic Thompson groups ($n \geq 10$) which are minimal but not ergodic. According to the referee, these actions admit measurable fundamental domains.

Question 1.3. Does there exist a minimal nonergodic $C^{1+\tau}$-diffeomorphism ($0 < \tau < 1$)? More generally for any $d \geq 2$ and $\tau > d^{-1}$, any free \mathbb{Z}^d-action by $C^{1+\tau}$-diffeomorphisms on S^1 is known to be minimal [DKN1]. Do there exist nonergodic actions? The method of this paper does not seem to be applicable to these problems.

2. A MEASURABLE FUNDAMENTAL DOMAIN FOR A LIPSCHITZ HOMEOMORPHISM

We regard the circle S^1 as \mathbb{R}/\mathbb{Z}. Suppose R denotes the rotation by α.

Claim 2.1. For any irrational number α, we can construct a Cantor set $C \in S^1$ so that $R^n C \cap R^m C = \emptyset$ for any integers $n \neq m$.

We will give a proof for the claim in Section 4. Here we show how to construct such a Cantor set for an easy case, namely, $\alpha = (\sqrt{5} - 1)/2$.

Define a Cantor set C in the circle by

$$C = \{ \sum_{k=1}^{\infty} \frac{\varepsilon_k}{2^k} \mid \varepsilon_k = 0 \text{ or } 1 \} \pmod{\mathbb{Z}}.$$

Note that all numbers in C are well approximable by rational numbers.

Suppose $x \in R^n C \cap R^m C$; then $x - n\alpha, x - m\alpha \in C$. Therefore

$$(-n + m)\alpha \in C + (-C) = \{ \sum_{k \geq 3} \frac{\varepsilon'_k}{2^k} \mid \varepsilon'_k = 0 \text{ or } \pm 1 \} \pmod{\mathbb{Z}}.$$

$(-n + m)\alpha$ is badly approximable, while $C + (-C)$ consists of well approximable numbers, which is a contradiction. Therefore, this Cantor set C satisfies the condition for Claim 2.1.

Fix a probability measure μ_0 on C without atoms such that $\text{supp}(\mu_0) = C$. We also choose a sequence $(a_i)_{i \in \mathbb{Z}}$ of positive numbers satisfying $\sum_{i \in \mathbb{Z}} a_i = 1$. Now we can define a probability measure μ on S^1 by

$$\mu := \sum_{i \in \mathbb{Z}} a_i R^i \mu_0.$$

The Radon-Nikodým derivative $\frac{dR^{-1} \mu}{d\mu}$ is equal to $\frac{a_{i+1}}{a_i}$ on the set $R^i C$. Now we assume that $\frac{a_{i+1}}{a_i} \in \left[\frac{1}{D}, D\right]$ for some $D > 1$. Then it follows that $\frac{dR^{-1} \mu}{d\mu} \in L^\infty(S^1, \mu)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We define a homeomorphism \(h \) of \(S^1 \) by \(h(0) = 0 \) and \(h(x) = y \) if and only if \(\text{Leb}[0, x] = \mu[0, y] \), where \(\text{Leb} \) denotes the Lebesgue measure on \(S^1 \) or, more briefly, \(h_* \text{Leb} = \mu \). Finally define a homeomorphism \(F \) of \(S^1 \) by \(F := h^{-1} \circ R \circ h \). Then
\[
\frac{dF_*^{-1} \text{Leb}}{d \text{Leb}} = \frac{dR_*^{-1} \mu}{d\mu} \circ h \in L^\infty(S^1, \text{Leb});
\]
i.e. the map \(F \) is a Lipschitz homeomorphism. The set \(C' = h^{-1}C \) is a measurable fundamental domain of \(F \).

3. Make it \(C^1 \)

3.1. \textbf{What shall we do?} To prove the theorem, we are trying to make the Radon-Nikodým derivative \(g = \frac{dR_*^{-1} \mu}{d\mu} \) continuous on \(S^1 \).

Fix an arbitrary point \(x_0 \in C \). For a positive integer \(i \),
\[
a_i = (a_i/a_{i-1}) \cdots (a_2/a_1)(a_1/a_0)a_0
\]
\[
= g(R^{i-1}x_0) \cdots g(Rx_0)g(x_0)a_0,
\]
\[
a_{-i} = (a_{-i+1}/a_{-i})^{-1} \cdots (a_{-1}/a_{-2})^{-1}(a_0/a_{-1})^{-1}a_0
\]
\[
= g(R^{-1}x_0)^{-1} \cdots g(R^{-2}x_0)^{-1}g(R^{-1}x_0)^{-1}a_0.
\]

Set \(\phi = \log g \) and define a map \(\Phi : S^1 \times \mathbb{R} \to S^1 \times \mathbb{R} \) by \(\Phi(x, y) = (Rx, y + \phi(x)) \). A simple calculation shows that \(\Phi^n(x, y) = (R^nx, y + \phi^n(x)) \), where
\[
\phi^{(m)}(x) = \sum_{i=0}^{m-1} \phi(R^ix) \quad (m > 0),
\]
\[
\phi^{(-m)}(x) = -\sum_{i=1}^{m} \phi(R^{-i}x) \quad (m > 0),
\]
\[
\phi^{(0)}(x) = 0.
\]

Therefore \(a_i = \exp(\phi^{(i)}(x_0))a_0 \). To satisfy \(\sum_{i \in \mathbb{Z}} a_i = 1 \), it suffices to find \(\phi \) so that \(\sum_{i \in \mathbb{Z}} \exp(\phi^{(i)}(x_0)) < \infty \).

3.2. \textbf{Construction step I.} Now we forget about the \(a_i \)'s and the Cantor set \(C \). As a first step, we construct a function \(\phi \in C(S^1) \) satisfying \(\sum_{i \in \mathbb{Z}} \exp(\phi^{(i)}(x_0)) < \infty \) for a single point \(x_0 \), where \(\phi^{(i)} \) are defined by (3.1).

We will define continuous functions \(\phi_n \in C(S^1) \) \((n \in \mathbb{N}) \) in such a way that \(\sum_{i=1}^{\infty} \|\phi_n\| < \infty \). Then \(\phi = \sum_{i=1}^{\infty} \phi_n \) converges uniformly; thus \(\phi \) is also continuous.

Fix an integer \(n \in \mathbb{N} \). Choose a sufficiently small neighbourhood \(J \) of \(x_0 \) so that \(R^{-2n}J, \ldots, R^{-1}J, R\cdot J, \ldots, R^{2n-1}J \) are disjoint. Consider a bump function \(f \) on \(J \) so that \(\text{supp } f \subset J \), \(f(x_0) = (3/4)^n \) and \(0 \leq f(x) < (3/4)^n \) on \(J \setminus \{x_0\} \). Define \(\phi_n : S^1 \to \mathbb{R} \) by
\[
\phi_n(x) = \begin{cases}
-f(R^{-i}x) & x \in R^i J, \; i = 0, 1, \ldots, 2^n - 1, \\
f(R^{-i}x) & x \in R^i J, \; i = -2^n, -2^n + 1, \ldots, -1, \\
0 & \text{otherwise.}
\end{cases}
\]

\textbf{Lemma 3.1.} \(\phi_n^{(i)}(x_0) \begin{cases}
-|i|(3/4)^n & \text{for } -2^n \leq i \leq 2^n, \\
\leq 0 & \text{for any } i \in \mathbb{Z}.
\end{cases} \)
Proof. The equality for the first case is trivial. Define an increasing sequence
\((m_k)_{k \in \mathbb{Z}}\) by \(m_0 = 0\) and \(\{m_k | k \in \mathbb{Z}\} = \{m \in \mathbb{Z} | R^m x_0 \in J\}\). Since \(R^{-2^2} J, \ldots, R^{2^n-1} J\) are disjoint, \(m_{k+1} - m_k \geq 2^{n+1}\) for any \(k \in \mathbb{Z}\). Using this sequence, \(R^m x_0 \in R^i J\) if and only if \(m = m_k + i\) for some \(k\). Therefore,

\[
\phi^{(i+1)}(x_0) = \begin{cases}
\phi^{(i)}(x_0) & m_{k-1} + 2^n \leq i < m_k - 2^n, \\
\phi^{(i)}(x_0) + f(R^{m_k} x_0) & m_k - 2^n \leq i < m_k, \\
\phi^{(i)}(x_0) - f(R^{m_k} x_0) & m_k \leq i < m_k + 2^n
\end{cases}
\]

for some \(k\); see also Figure 1. Induction for \(|k|\) shows that

\[
\phi^{(i)}(x_0) = \begin{cases}
-2^n \cdot (3/4)^n & m_{k-1} + 2^n \leq i \leq m_k - 2^n, \\
-2^n \cdot (3/4)^n + (i - (m_k - 2^n)) f(R^{m_k} x_0) & m_k - 2^n \leq i \leq m_k, \\
-2^n \cdot (3/4)^n + ((m_k + 2^n) - i) f(R^{m_k} x_0) & m_k \leq i \leq m_k + 2^n.
\end{cases}
\]
Since \(f(R^m x_0) \leq (3/4)^n \), the inequality \(\phi^{(i)}(x_0) \leq 0 \) also holds. \(\Box\)

Therefore, if \(2^n \leq |i| < 2^{n+1} \), \(\phi^{(i)}(x_0) \leq \phi^{(i)}_{n+1}(x_0) = -|i|(3/4)^{n+1} \leq -2^n \cdot (3/4)^{n+1} = -3/4 \cdot (3/2)^n \). Finally, \(\sum_{i \in \mathbb{Z}} \exp(\phi^{(i)}(x_0)) \leq 1 + \sum_{n=0}^{\infty} 2^{n+1} \exp(-3/4 \cdot (3/2)^n) = M < \infty. \)

3.3. Construction step II. We will execute the same argument for the Cantor set \(C \) instead of the single point \(x_0 \). Since \(R^{-2^n} C, \ldots, R^{-2^n-1} C \) are disjoint compact sets, there exists an \(\varepsilon \)-neighbourhood \(N \) of \(C \) such that \(R^{-2^n} N, \ldots, N, \ldots, R^{-2^n-1} N \) are disjoint. Define a bump function \(f \) so that \(\text{supp} f \subset N \), \(f(x) = (3/4)^n \) on \(C \) and \(0 \leq f(x) < (3/4)^n \) on \(N \setminus C \). Now we apply the same argument as in the previous subsection to obtain the function \(\phi \in C(S^1) \) such that \(\sum_{i \in \mathbb{Z}} \exp(\phi^{(i)}(x)) < M < \infty \) for any \(x \in C \).

We define a finite measure \(\tilde{\mu} \) on \(S^1 \) by

\[
\tilde{\mu} := \sum_{i \in \mathbb{Z}} (\exp \circ \phi^{(i)} \circ R^{-1}) R_i^* \mu_0.
\]

Normalize \(\tilde{\mu} \) to obtain a probability measure \(\mu \), namely \(\mu := \frac{\tilde{\mu}}{\int_{S^1} d\mu} \).

Define \(h \) and \(F \) as in section 2. Then

\[
\frac{dF^{-1}_s \text{Leb}}{d \text{Leb}} = \frac{dR^{-1}_s \mu}{d\mu} \circ h = g \circ h
\]
is a continuous function because \(g(x) = \exp(\phi(x)) \). We have proved Theorem 1.1 up to Claim 2.1.

4. Construction of Cantor set for general \(\alpha \)

We are going to prove Claim 2.1 for a general irrational number \(\alpha \). For a real number \(x \) and a function \(p: \mathbb{N} \to \mathbb{N} \), define the approximation constant \(c_p(x) \) by

\[
c_p(x) := \liminf_{q \to \infty} \left(p(q) \cdot \text{dist}(x, \frac{1}{q} \mathbb{Z}) \right).
\]

A real number \(x \) is said to be \(p \)-approximable if \(c_p(x) = 0 \). Note that \(x \) is well approximable if \(x \) is \(p \)-approximable for \(p(q) = q^2 \), so this is a generalization of well-approximability.

It is clear that \(c_p(x) = 0 \) if \(x \) is a rational number. On the other hand, for any irrational number \(x \) we can find a function \(p \) satisfying \(c_p(x) > 0 \). Moreover, we will show the following lemma.

Lemma 4.1. For a given irrational number \(\alpha \), we can find a function \(p \) such that \(c_p(m \alpha) \geq 1 \) for any nonzero integer \(m \).

Proof. Since \(c_p(-m \alpha) = c_p(m \alpha) \), it is enough to show the lemma for the case \(m \in \mathbb{N} \). Let us start for any natural numbers \(n \) and \(q \) by taking a natural number \(p_n(q) \) so that \(p_n(q) \cdot \text{dist}(m \alpha, \frac{1}{q} \mathbb{Z}) \geq 1 \). Then define a function \(p \) by

\[
p(q) = \max_{1 \leq n \leq q} p_n(q).
\]
By this construction \(p(q) \geq p_m(q) \) for any \(q \geq m \). Therefore
\[
c_p(m\alpha) = \liminf_{q \to \infty} \left(p(q) \cdot \text{dist}(m\alpha, \frac{1}{q} \mathbb{Z}) \right)
\geq \liminf_{q \to \infty} \left(p_m(q) \cdot \text{dist}(m\alpha, \frac{1}{q} \mathbb{Z}) \right)
\geq 1.
\]
\[
\quad \square
\]

For this function \(p \), we inductively take an increasing sequence \(q_0, q_1, \ldots \) of natural numbers satisfying the following conditions: \(q_0 = 1 \), \(q_n|q_{n+1} \), \(q_n/q_{n+1} \leq 1/3 \) and \(p(q_n)/q_{n+1} \leq 2^{-n} \). Define a Cantor set \(C \) by
\[
C := \left\{ \sum_{n=1}^{\infty} \varepsilon_n \frac{\varepsilon_n}{q_n} \mid \varepsilon_n = 0 \text{ or } 1 \right\}.
\]
This Cantor set \(C \) consists of \(p \)-approximable numbers. We can also show the following lemma.

Lemma 4.2. For any \(\beta \in C - C \), the approximation constant \(c_p(\beta) \) is equal to 0, where
\[
C - C = \left\{ \sum_{n=1}^{\infty} \varepsilon'_n \frac{\varepsilon'_n}{q_n} \mid \varepsilon'_n = 0 \text{ or } \pm 1 \right\}.
\]

Proof.
\[
p(q_i) \cdot \text{dist}(\beta, \frac{1}{q_i} \mathbb{Z}) \leq p(q_i) \left| \sum_{n=i+1}^{\infty} \frac{\varepsilon'_n}{q_n} \right|
\leq p(q_i) \sum_{n=i+1}^{\infty} \frac{1}{q_n} = p(q_i) \sum_{n=i+1}^{\infty} \frac{q_{i+1}}{q_n} \leq \frac{1}{2^i} \sum_{k=0}^{\infty} \left(\frac{1}{3} \right)^k = \frac{3}{2^{i+1}}.
\]
Thus
\[
c_p(\beta) = \liminf_{q \to \infty} \left(p(q) \cdot \text{dist}(\beta, \frac{1}{q} \mathbb{Z}) \right)
\leq \liminf_{i \to \infty} \left(p(q_i) \cdot \text{dist}(\beta, \frac{1}{q_i} \mathbb{Z}) \right)
\leq \liminf_{i \to \infty} \frac{3}{2^{i+1}}
= 0.
\]
Therefore \(c_p(\beta) = 0 \). \(\square \)

Claim 2.1 follows from Lemma 4.1 and Lemma 4.2 so we have proved Theorem 1.1 for the general case.

Acknowledgement

The authors are grateful to the referee for valuable comments.
REFERENCES

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914 Japan
E-mail address: kodama@ms.u-tokyo.ac.jp

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
E-mail address: matsumo@math.cst.nihon-u.ac.jp