Binomial arithmetical rank of edge ideals of forests

Authors:
Kyouko Kimura and Naoki Terai

Journal:
Proc. Amer. Math. Soc. **141** (2013), 1925-1932

MSC (2010):
Primary 13F55, 05C05

DOI:
https://doi.org/10.1090/S0002-9939-2013-11473-5

Published electronically:
January 2, 2013

MathSciNet review:
3034419

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the binomial arithmetical rank of the edge ideal of a forest coincides with its big height.

**1.**M. Barile,*On the arithmetical rank of the edge ideals of forests*, Comm. Algebra**36**(2008), 4678-4703. MR**2473354 (2009j:13028)****2.**M. Barile, D. Kiani, F. Mohammadi and S. Yassemi,*Arithmetical rank of the cyclic and bicyclic graphs*, J. Algebra Appl.**11**(2012), no. 2, 1250039, 14 pp. MR**2925452****3.**M. Barile and N. Terai,*Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone*, Comm. Algebra**38**(2010), 3686-3698. MR**2760684 (2011j:13033)****4.**M. Barile and N. Terai,*The Stanley-Reisner ideals of polygons as set-theoretic complete intersections*, Comm. Algebra**39**(2011), 621-633. MR**2773327****5.**V. Ene, O. Olteanu and N. Terai.*Arithmetical rank of lexsegment edge ideals*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)**53 (101)**(2010), 315-327. MR**2777678 (2011m:13037)****6.**J. He and A. Van Tuyl,*Algebraic properties of the path ideals of a tree*, Comm. Algebra**38**(2010), 1725-1742. MR**2642022 (2011e:13028)****7.**K. Kimura,*Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two*, J. Commut. Algebra**3**(2011), 31-46. MR**2782698****8.**K. Kimura, G. Rinaldo and N. Terai,*Arithmetical rank of squarefree monomial ideals generated by five elements or with arithmetic degree four*, to appear in Comm. Algebra.**9.**K. Kimura, N. Terai and K. Yoshida,*Arithmetical rank of squarefree monomial ideals of small arithmetic degree*, J. Algebraic Combin.**29**(2009), 389-404. MR**2496313 (2009m:13030)****10.**K. Kimura, N. Terai and K. Yoshida,*Arithmetical rank of monomial ideals of deviation two*, in Combinatorial Aspects of Commutative Algebra (V. Ene and E. Miller, eds.), Contemporary Mathematics,**502**, AMS (2009), 73-112. MR**2583275 (2011c:13043)****11.**M. Kummini,*Regularity, depth and arithmetic rank of bipartite edge ideals*, J. Algebraic Combin.**30**(2009), 429-445. MR**2563135 (2010j:13040)****12.**G. Lyubeznik,*On the local cohomology modules for ideals generated by monomials in an -sequence*, in Complete Intersections, Acireale, 1983 (S. Greco and R. Strano, eds.), Lecture Notes in Mathematics, No. 1092, Springer-Verlag, 1984, pp. 214-220. MR**775884 (86f:14002)****13.**M. Morales,*Simplicial ideals, -linear ideals and arithmetical rank*, J. Algebra**324**(2010), 3431-3456. MR**2735392 (2011j:13028)****14.**P. Mongelli,*The arithmetical rank of a special class of monomial ideals*, preprint, arXiv:1005.2586.**15.**T. Schmitt and W. Vogel,*Note on set-theoretic intersections of subvarieties of projective space*, Math. Ann.**245**(1979), 247-253. MR**553343 (81a:14025)****16.**M. Varbaro,*Symbolic powers and matroids*, Proc. Amer. Math. Soc.**139**(2011), 2357-2366. MR**2784800**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13F55,
05C05

Retrieve articles in all journals with MSC (2010): 13F55, 05C05

Additional Information

**Kyouko Kimura**

Affiliation:
Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

Email:
skkimur@ipc.shizuoka.ac.jp

**Naoki Terai**

Affiliation:
Department of Mathematics, Faculty of Culture and Education, Saga University, Saga 840-8502, Japan

Email:
terai@cc.saga-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-2013-11473-5

Keywords:
Binomial arithmetical rank,
primitive tree,
tree-like system,
edge ideal

Received by editor(s):
June 27, 2011

Received by editor(s) in revised form:
September 26, 2011

Published electronically:
January 2, 2013

Communicated by:
Irena Peeva

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.