Binomial arithmetical rank of edge ideals of forests

Authors:
Kyouko Kimura and Naoki Terai

Journal:
Proc. Amer. Math. Soc. **141** (2013), 1925-1932

MSC (2010):
Primary 13F55, 05C05

Published electronically:
January 2, 2013

MathSciNet review:
3034419

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the binomial arithmetical rank of the edge ideal of a forest coincides with its big height.

**1.**Margherita Barile,*On the arithmetical rank of the edge ideals of forests*, Comm. Algebra**36**(2008), no. 12, 4678–4703. MR**2473354**, 10.1080/00927870802161220**2.**Margherita Barile, Dariush Kiani, Fatemeh Mohammadi, and Siamak Yassemi,*Arithmetical rank of the cyclic and bicyclic graphs*, J. Algebra Appl.**11**(2012), no. 2, 1250039, 14. MR**2925452**, 10.1142/S0219498811005634**3.**Margherita Barile and Naoki Terai,*Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone*, Comm. Algebra**38**(2010), no. 10, 3686–3698. MR**2760684**, 10.1080/00927870903236186**4.**Margherita Barile and Naoki Terai,*The Stanley-Reisner ideals of polygons as set-theoretic complete intersections*, Comm. Algebra**39**(2011), no. 2, 621–633. MR**2773327**, 10.1080/00927871003597634**5.**Viviana Ene, Oana Olteanu, and Naoki Terai,*Arithmetical rank of lexsegment edge ideals*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)**53(101)**(2010), no. 4, 315–327. MR**2777678****6.**Jing He and Adam Van Tuyl,*Algebraic properties of the path ideal of a tree*, Comm. Algebra**38**(2010), no. 5, 1725–1742. MR**2642022**, 10.1080/00927870902998166**7.**Kyouko Kimura,*Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two*, J. Commut. Algebra**3**(2011), no. 1, 31–46. MR**2782698**, 10.1216/JCA-2011-3-1-31**8.**K. Kimura, G. Rinaldo and N. Terai,*Arithmetical rank of squarefree monomial ideals generated by five elements or with arithmetic degree four*, to appear in Comm. Algebra.**9.**Kyouko Kimura, Naoki Terai, and Ken-ichi Yoshida,*Arithmetical rank of squarefree monomial ideals of small arithmetic degree*, J. Algebraic Combin.**29**(2009), no. 3, 389–404. MR**2496313**, 10.1007/s10801-008-0142-3**10.**Kyouko Kimura, Naoki Terai, and Ken-ichi Yoshida,*Arithmetical rank of monomial ideals of deviation two*, Combinatorial aspects of commutative algebra, Contemp. Math., vol. 502, Amer. Math. Soc., Providence, RI, 2009, pp. 73–112. MR**2583275**, 10.1090/conm/502/09858**11.**Manoj Kummini,*Regularity, depth and arithmetic rank of bipartite edge ideals*, J. Algebraic Combin.**30**(2009), no. 4, 429–445. MR**2563135**, 10.1007/s10801-009-0171-6**12.**Gennady Lyubeznik,*On the local cohomology modules 𝐻ⁱ_{𝔞}(ℜ) for ideals 𝔞 generated by monomials in an ℜ-sequence*, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 214–220. MR**775884**, 10.1007/BFb0099364**13.**Marcel Morales,*Simplicial ideals, 2-linear ideals and arithmetical rank*, J. Algebra**324**(2010), no. 12, 3431–3456. MR**2735392**, 10.1016/j.jalgebra.2010.08.025**14.**P. Mongelli,*The arithmetical rank of a special class of monomial ideals*, preprint, arXiv:1005.2586.**15.**Thomas Schmitt and Wolfgang Vogel,*Note on set-theoretic intersections of subvarieties of projective space*, Math. Ann.**245**(1979), no. 3, 247–253. MR**553343**, 10.1007/BF01673509**16.**Matteo Varbaro,*Symbolic powers and matroids*, Proc. Amer. Math. Soc.**139**(2011), no. 7, 2357–2366. MR**2784800**, 10.1090/S0002-9939-2010-10685-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13F55,
05C05

Retrieve articles in all journals with MSC (2010): 13F55, 05C05

Additional Information

**Kyouko Kimura**

Affiliation:
Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

Email:
skkimur@ipc.shizuoka.ac.jp

**Naoki Terai**

Affiliation:
Department of Mathematics, Faculty of Culture and Education, Saga University, Saga 840-8502, Japan

Email:
terai@cc.saga-u.ac.jp

DOI:
http://dx.doi.org/10.1090/S0002-9939-2013-11473-5

Keywords:
Binomial arithmetical rank,
primitive tree,
tree-like system,
edge ideal

Received by editor(s):
June 27, 2011

Received by editor(s) in revised form:
September 26, 2011

Published electronically:
January 2, 2013

Communicated by:
Irena Peeva

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.