Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Nonrigidity of a class of two dimensional surfaces with positive curvature and planar points


Author: A. Meziani
Journal: Proc. Amer. Math. Soc. 141 (2013), 2137-2143
MSC (2010): Primary 53A05; Secondary 30G20, 35F05
Published electronically: January 25, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence of nontrivial infinitesimal bendings is established for an orientable surface with boundary $ S\subset \mathbb{R}^3$ that has positive curvature except at finitely many planar points and such that $ H_1(S)=0$. As an application, we show that any neighborhood of such a surface $ S$ (for the $ C^k$ topology) contains isometric surfaces that are noncongruent.


References [Enhancements On Off] (What's this?)

  • 1. B. Audoly, Courbes rigidifiant les surfaces, C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), No. 4, 313-316. MR 1675944 (99m:53003)
  • 2. D.D. Bleecker, Infinitesimal deformations of portions of the standard sphere in $ E^3$, Amer. Math. Monthly, Vol. 87, No. 3, 175-182 (1980). MR 562920 (81h:53060)
  • 3. N.V. Efimov, Qualitative problems of the theory of deformation of surfaces, Uspekhi Mat. Nauk. 3(2) (1948), 47-158.MR 0027567 (10:324a)
  • 4. R.E. Greene and H. Wu, On the rigidity of punctured ovaloids, Ann. of Math. (2), Vol. 94, 1-20 (1971). MR 0290306 (44:7490)
  • 5. E. Kann, Glidebending of general caps: An infinitesimal treatment, Proc. Amer. Math. Soc., Vol. 84, No. 2, 247-255 (1982). MR 637178 (83a:53004)
  • 6. I. Karatopraklieva, Infinitesimal bendings of higher order of rotational surfaces, C. R. Acad. Bulgare Sci. 43 (12) (1990), 13-16. MR 1107836 (92d:53005)
  • 7. A. Meziani, On planar elliptic structures with infinite type degeneracy, J. Funct. Anal., Vol. 179, 333-373 (2001). MR 1809114 (2001k:35122)
  • 8. A. Meziani, Infinitesimal bendings of homogeneous surfaces with nonnegative curvature, Comm. Anal. Geom., Vol. 11, 697-719 (2003). MR 2015172 (2004i:53003)
  • 9. A. Meziani, Planar complex vector fields and infinitesimal bendings of surfaces with nonnegative curvature, in: Contemp. Math., Vol. 400, 189-201, Amer. Math. Soc., Providence, RI, 2006. MR 2222475 (2007a:53004)
  • 10. A. Meziani, Infinitesimal bendings of high orders for homogeneous surfaces with positive curvature and a flat point, J. Diff. Equations, Vol. 239, 16-37 (2007). MR 2341547 (2008m:35031)
  • 11. A. Meziani, Representation of solutions of a singular CR equation in the plane, Complex Var. Elliptic Equ., Vol. 53, No. 2, 1111-1130 (2008). MR 2467386 (2009j:30105)
  • 12. A.V. Pogorelov, Bendings of Surfaces and Stability of Shells, Nauka, Moscow, 1986; translation: Translations of Mathematical Monographs, Vol. 72, Amer. Math. Soc., Providence, RI, 1988. MR 972263 (89j:73084)
  • 13. A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translations of Mathematical Monographs, Vol. 35, Amer. Math. Soc., Providence, RI, 1973. MR 0346714 (49:11439)
  • 14. I.K. Sabitov, Local Theory of Bendings of Surfaces, Encyclopaedia Math. Sci., Vol. 48, Springer-Verlag, 1992. MR 1306736
  • 15. I.K. Sabitov, Investigation of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole, Vestn. Univ. Ser. I5 (1986) 29-36; translation in: Mosc. Univ. Math. Bull. 41 (1986), 33-41. MR 872261 (87k:53007)
  • 16. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish, Boston, MA, 1975. MR 0394453 (52:15254b)
  • 17. G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957. MR 0092855 (19:1169g)
  • 18. A. Tungatarov, Continuous solutions of the generalized Cauchy-Riemann system with a finite number of singular points, Mat. Zametki 56(1) (1994), 105-115; translation in: Math. Notes 56(1-2) (1994), 722-729 (1995). MR 1309825 (95k:35033)
  • 19. Z.D. Usmanov, On Efimov surfaces that are rigid in the small, Mat. Sb. 187 (6) (1996), 119-130; translated in: Sb. Math. 187 (6) (1996), 903-915. MR 1407683 (97d:53004)
  • 20. Z.D. Usmanov, Generalized Cauchy-Riemann Systems with a Singular Point, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 85, Longman Harlow, 1997. MR 1461814 (98f:30040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53A05, 30G20, 35F05

Retrieve articles in all journals with MSC (2010): 53A05, 30G20, 35F05


Additional Information

A. Meziani
Affiliation: Department of Mathematics, Florida International University, Miami, Florida 33199
Email: meziani@fiu.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11488-7
PII: S 0002-9939(2013)11488-7
Keywords: Infinitesimal bending, surface, positive curvature, asymptotic direction
Received by editor(s): December 10, 2009
Received by editor(s) in revised form: October 4, 2011
Published electronically: January 25, 2013
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.