Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

An example of compact Kähler manifold with nonnegative quadratic bisectional curvature


Authors: Qun Li, Damin Wu and Fangyang Zheng
Journal: Proc. Amer. Math. Soc. 141 (2013), 2117-2126
MSC (2010): Primary 32M10, 53C55; Secondary 53C21, 53C30
Published electronically: February 12, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a compact Kähler manifold of nonnegative quadratic bisectional curvature which does not admit any Kähler metric of nonnegative orthogonal bisectional curvature. The manifold is a 7-dimensional Kähler $ C$-space with second Betti number equal to 1, and its canonical metric is a Kähler-Einstein metric of positive scalar curvature.


References [Enhancements On Off] (What's this?)

  • 1. A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1147-1151. MR 0077878 (17:1108e)
  • 2. A. Borel, On the curvature tensor of Hermitian symmetric manifolds, Ann. of Math. (2), 71 (1960), 508-521. MR 0111059 (22:1923)
  • 3. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538. MR 0102800 (21:1586)
  • 4. S. Brendle and R. Schoen, Classification of manifolds with weakly $ 1/4$-pinched curvature, Acta. Math., 200 (2008), 1-13. MR 2386107 (2009h:53087)
  • 5. S. Brendle and R. Schoen, Manifolds with $ 1/4$-pinched curvature are space forms, J. Amer. Math. Soc., 22 (2009), 287-307. MR 2449060 (2010a:53045)
  • 6. A. Chau and L. F. Tam, On quadratic orthogonal bisectional curvature, preprint. To appear in J. Differential Geom.
  • 7. X. X. Chen, On Kähler manifolds with positive orthogonal bisectional curvature, Adv. Math., 215 (2007), 427-445. MR 2355611 (2008h:32029)
  • 8. J. P. Demailly, T. Peternell, and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., 3 (1994), 295-345. MR 1257325 (95f:32037)
  • 9. J. X. Fu, Z. Wang, and D. Wu, Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature, arXiv: 1010.2022
  • 10. H. L. Gu and Z. H. Zhang, An extension of Mok's Theorem on the generalized Frankel conjecture, Sci. China, Math., 53 (2010), 1253-1264. MR 2653275 (2011d:53156)
  • 11. A. Howard, B. Smyth, and H. Wu, On compact Kähler manifolds of nonnegative bisectional curvature, I, Acta. Math., 147 (1981), 51-56. MR 631087 (83e:53064a)
  • 12. M. Itoh, On curvature properties of Kähler $ C$-spaces, J. Math. Soc. Japan, 30 (1978), 39-71. MR 0470904 (57:10648)
  • 13. Q. Li, D. Wu, and F. Zheng, Quadratic bisectional curvature and constant rank theorems, in preparation.
  • 14. N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom., 27 (1988), 179-227. MR 925119 (89d:53115)
  • 15. H. C. Wang, Closed manifolds with homogeneous complex structures, Amer. J. Math., 76 (1954), 1-32. MR 0066011 (16:518a)
  • 16. H. Wu, On compact Kähler manifolds of nonnegative bisectional curvature, II, Acta. Math., 147 (1981), 57-70. MR 631088 (83e:53064b)
  • 17. D. Wu, S. T. Yau and F. Zheng, A degenerate Monge-Ampère equation and the boundary classes of Kähler cones, Math. Res. Lett., 16 (2009), 365-374. MR 2496750 (2010c:32061)
  • 18. X. Zhang, On the boundary of Kähler cones, Proc. Amer. Math. Soc., 140 (2012), 701-705. MR 2846339
  • 19. F. Zheng, Complex Differential Geometry, AMS and International Press, 2000. MR 1777835 (2001i:32035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32M10, 53C55, 53C21, 53C30

Retrieve articles in all journals with MSC (2010): 32M10, 53C55, 53C21, 53C30


Additional Information

Qun Li
Affiliation: Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435
Email: qun.li@wright.edu

Damin Wu
Affiliation: Department of Mathematics, The Ohio State University, 1179 University Drive, Newark, Ohio 43055
Address at time of publication: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email: dwu@math.ohio-state.edu, damin.wu@uconn.edu

Fangyang Zheng
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210 – and – Center for Mathematical Sciences, Zhejiang University, Hangzhou, 310027 People’s Republic of China
Email: zheng@math.ohio-state.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11596-0
PII: S 0002-9939(2013)11596-0
Received by editor(s): October 7, 2011
Published electronically: February 12, 2013
Communicated by: Lei Ni
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.