Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions


Authors: L. E. Payne and G. A. Philippin
Journal: Proc. Amer. Math. Soc. 141 (2013), 2309-2318
MSC (2010): Primary 35K55, 35K61, 35B30, 35B44
Published electronically: February 20, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of initial boundary value problems for the semilinear heat equation with time dependent coefficients is considered. Using a first order differential inequality technique, the influence of the data on the behaviour of the solutions (blow-up in finite or infinite time, global existence) is investigated. Lower and upper bounds are derived for the blow-up time when blow-up occurs.


References [Enhancements On Off] (What's this?)

  • 1. Ball, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford, 28, 473-486, (1977). MR 0473484 (57:13150)
  • 2. Bandle, C., Brunner, H., Blowup in diffusion equations: a survey, J. Comput. Appl. Math., 97, 3-22, (1998). MR 1651764 (99g:35061)
  • 3. Enache, C., Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary conditions. Appl. Math. Letters, 24, 288-292, (2011). MR 2741031 (2011h:35145)
  • 4. Enache, C., Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions. Glasgow Math. J., 53, 569-575, (2011). MR 2822799 (2012i:35174)
  • 5. Kaplan, S., On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math., 16, 305-330, (1963). MR 0160044 (28:3258)
  • 6. Kielhöfer, H., Halbgruppen und semilineare Anfangs-randwert-probleme. Manuscripta Math., 12, 121-152, (1974). MR 0344681 (49:9420)
  • 7. Levine, H. A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $ Pu_t = -Au +F(u)$, Arch. Rat. Mech. Anal., 51, 371-386, (1973). MR 0348216 (50:714)
  • 8. Payne, L. E., Philippin, G. A., Schaefer, P. W., Bounds for blow-up time in nonlinear parabolic problems. J. Math. Anal. Appl., 338, 438-447, (2008). MR 2386428 (2009c:35233)
  • 9. Payne, L. E., Philippin, G. A., Schaefer, P. W., Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal., 69, 3495-3502, (2008). MR 2450554 (2010a:35105)
  • 10. Payne, L. E., Philippin, G. A., Vernier-Piro, S., Blow-up phenonena for a semilinear heat equation with nonlinear boundary condition, I. Z. Angew. Math. Phys., 61, 999-1007, (2010). MR 2738300
  • 11. Payne, L. E., Philippin, G. A., Vernier-Piro, S., Blow-up phenonena for a semilinear heat equation with nonlinear boundary condition, II. Nonlinear Anal., 73, 971-978, (2010). MR 2653764 (2011d:35264)
  • 12. Payne, L. E., Schaefer, P. W., Lower bound for blow-up time in parabolic problems under Neumann conditions. Appl. Anal., 85, 1301-1311, (2006). MR 2263927 (2007f:35147)
  • 13. Payne, L. E., Schaefer, P. W., Lower bound for blow-up time in parabolic problems under Dirichlet conditions. J. Math. Anal. Appl., 328, 1196-1205, (2007). MR 2290045 (2007k:35239)
  • 14. Payne, L. E., Schaefer, P. W., Blow-up phenomena for some nonlinear parabolic systems. Int. J. Pure Appl. Math., 48, 193-202, (2008). MR 2463922 (2009k:35114)
  • 15. Payne, L. E., Schaefer, P. W., Bounds for the blow-up time for the heat equation under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh, 139 A, 1289-1296, (2009). MR 2557324 (2010k:35268)
  • 16. Payne, L. E., Song, J. C., Lower bounds for blow-up time in a nonlinear parabolic problem, J. Math. Anal. Appl., 354, 394-396, (2009). MR 2510449 (2010b:35226)
  • 17. Philippin, G. A., Proytcheva, V., Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems. Math. Meth. Appl. Sci., 29, 297-307, (2006). MR 2191431 (2007g:35109)
  • 18. Quittner, P., On global existence and stationary solutions of two classes of semilinear parabolic equations. Comm. Math. Univ. Carolin., 34, 105-124, (1993). MR 1240209 (94g:35127)
  • 19. Quittner, P., Souplet, P., Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser, Basel, (2007). MR 2346798 (2008f:35001)
  • 20. Straughan, B., Explosive Instabilities in Mechanics. Springer, Berlin, (1998). MR 1637904 (99k:35175)
  • 21. Talenti, G., Best constant in Sobolev inequality. Annali Mat. Pura Appl., 110, 353-372, (1976). MR 0463908 (57:3846)
  • 22. Vazquez, J. L., The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15, 281-300, (2004). MR 2148886 (2006b:35172)
  • 23. Weissler, F. B., Local existence and nonexistence for semilinear parabolic equations in $ L^p$. Indiana Univ. Math. J., 29, 79-102, (1980). MR 554819 (81c:35072)
  • 24. Weissler, F. B., Existence and nonexistence of global solutions for a heat equation, Israël J. Math., 38(1-2), 29-40, (1981). MR 599472 (82g:35059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35K55, 35K61, 35B30, 35B44

Retrieve articles in all journals with MSC (2010): 35K55, 35K61, 35B30, 35B44


Additional Information

L. E. Payne
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853

G. A. Philippin
Affiliation: Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1V 0A6
Email: gphilip@mat.ulaval.ca

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11493-0
PII: S 0002-9939(2013)11493-0
Keywords: Parabolic problems, blow-up.
Received by editor(s): July 9, 2011
Received by editor(s) in revised form: October 9, 2011
Published electronically: February 20, 2013
Communicated by: Michael Hitrik
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.