Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the tail of Jones polynomials of closed braids with a full twist


Authors: Abhijit Champanerkar and Ilya Kofman
Journal: Proc. Amer. Math. Soc. 141 (2013), 2557-2567
MSC (2010): Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-2013-11555-8
Published electronically: March 12, 2013
MathSciNet review: 3043035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a closed $ n$-braid $ L$ with a full positive twist and with $ \ell $ negative crossings, $ 0\leq \ell \leq n$, we determine the first $ n-\ell +1$ terms of the Jones polynomial $ V_L(t)$. We show that $ V_L(t)$ satisfies a braid index constraint, which is a gap of length at least $ n-\ell $ between the first two nonzero coefficients of $ (1-t^2) V_L(t)$. For a closed positive $ n$-braid with a full positive twist, we extend our results to the colored Jones polynomials. For $ N>n-1$, we determine the first $ n(N-1)+1$ terms of the normalized $ N$-th colored Jones polynomial.


References [Enhancements On Off] (What's this?)

  • 1. C. Armond.
    Walks along braids and the colored Jones polynomial, arXiv:1101.3810v1 [math.GT], 2011.
  • 2. J. Birman and I. Kofman.
    A new twist on Lorenz links.
    J. Topol., 2(2):227-248, 2009. MR 2529294 (2010i:57010)
  • 3. A. Champanerkar, D. Futer, I. Kofman, W. Neumann, and J. Purcell.
    Volume bounds for generalized twisted torus links,
    Math. Res. Lett., 18(6):1097-1120, 2011. MR 2915470
  • 4. A. Champanerkar and I. Kofman.
    On the Mahler measure of Jones polynomials under twisting.
    Algebr. Geom. Topol., 5:1-22, 2005. MR 2135542 (2006b:57010)
  • 5. A. Champanerkar, I. Kofman, and E. Patterson.
    The next simplest hyperbolic knots.
    J. Knot Theory Ramifications, 13(7):965-987, 2004. MR 2101238 (2005k:57010)
  • 6. O. Dasbach and X.-S. Lin.
    On the head and the tail of the colored Jones polynomial.
    Compos. Math., 142(5):1332-1342, 2006. MR 2264669 (2007g:57018)
  • 7. J. Franks and R. F. Williams.
    Braids and the Jones polynomial.
    Trans. Amer. Math. Soc., 303(1):97-108, 1987. MR 896009 (88k:57006)
  • 8. D. Futer, E. Kalfagianni, and J. Purcell.
    Dehn filling, volume, and the Jones polynomial.

    J. Differential Geometry, 78(3):429-464, 2008. MR 2396249 (2009c:57010)
  • 9. D. Futer, E. Kalfagianni, and J. Purcell.
    Cusp areas of Farey manifolds and applications to knot theory.
    Int. Math. Res. Not. IMRN, 23:4434-4497, 2010. MR 2739802 (2011k:57027)
  • 10. S. Garoufalidis.
    The degree of a $ q$-holonomic sequence is a quadratic quasi-polynomial.
    Electron. J. Combin., 18(2):Paper 4, 23, 2011. MR 2795781
  • 11. J.-M. Isidro, J. M. F. Labastida, and A. V. Ramallo.
    Polynomials for torus links from Chern-Simons gauge theories.
    Nuclear Phys. B, 398(1):187-236, 1993. MR 1222806 (95e:57014)
  • 12. V. Jones.
    Hecke algebra representations of braid groups and link polynomials.
    Ann. of Math. (2), 126(2):335-388, 1987. MR 908150 (89c:46092)
  • 13. R. Kirby and P. Melvin.
    The $ 3$-manifold invariants of Witten and Reshetikhin-Turaev for $ {\rm sl}(2,{\bf C})$.
    Invent. Math., 105(3):473-545, 1991. MR 1117149 (92e:57011)
  • 14. H. R. Morton.
    Seifert circles and knot polynomials.
    Math. Proc. Cambridge Philos. Soc., 99(1):107-109, 1986. MR 809504 (87c:57006)
  • 15. A. Stoimenow.
    On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks.
    Trans. Amer. Math. Soc., 354(10):3927-3954 (electronic), 2002. MR 1926860 (2003f:57022)
  • 16. H. Wenzl.
    Braids and invariants of $ 3$-manifolds.
    Invent. Math., 114(2):235-275, 1993. MR 1240638 (94i:57021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M25

Retrieve articles in all journals with MSC (2010): 57M25


Additional Information

Abhijit Champanerkar
Affiliation: Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 – and – Department of Mathematics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016
Email: abhijit@math.csi.cuny.edu

Ilya Kofman
Affiliation: Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 – and – Department of Mathematics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016
Email: ikofman@math.csi.cuny.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11555-8
Received by editor(s): April 5, 2011
Received by editor(s) in revised form: October 15, 2011
Published electronically: March 12, 2013
Additional Notes: Both authors gratefully acknowledge support by the NSF, Simons Foundation, and PSC-CUNY
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society