Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Non-interlaced solutions of 2-dimensional systems of linear ordinary differential equations

Authors: O. Le Gal, F. Sanz and P. Speissegger
Journal: Proc. Amer. Math. Soc. 141 (2013), 2429-2438
MSC (2010): Primary 34C08, 03C64
Published electronically: March 28, 2013
MathSciNet review: 3043024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a $ 2$-dimensional system of linear ordinary differential equations whose coefficients are definable in an o-minimal structure $ \mathcal {R}$. We prove that either every pair of solutions at 0 of the system is interlaced or the expansion of $ \mathcal {R}$ by all solutions at 0 of the system is o-minimal. We also show that if the coefficients of the system have a Taylor development of sufficiently large finite order, then the question of which of the two cases holds can be effectively determined in terms of the coefficients of this Taylor development.

References [Enhancements On Off] (What's this?)

  • 1. Michael Boshernitzan.
    Second order differential equations over Hardy fields.
    J. London Math. Soc. (2), 35(1):109-120, 1987. MR 871769 (88f:26001)
  • 2. F. Cano, R. Moussu, and F. Sanz.
    Oscillation, spiralement, tourbillonnement.
    Comment. Math. Helv., 75(2):284-318, 2000. MR 1774707 (2001k:37034)
  • 3. Felipe Cano, Robert Moussu, and Fernando Sanz.
    Pinceaux de courbes intégrales d'un champ de vecteurs analytique.
    Astérisque, (297):1-34, 2004.
    Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. II. MR 2135673 (2006a:34094)
  • 4. M. Coste.
    An introduction to o-minimal geometry.
    Instituti editoriali e poligrafici internazionali, 2000.
  • 5. Georges Comte and Yosef Yomdin.
    Rotation of trajectories of Lipschitz vector fields.
    J. Differential Geom., 81(3):601-630, 2009. MR 2487602 (2010h:37042)
  • 6. L. van den Dries and C. Miller.
    Geometric categories and o-minimal structures.
    Duke Math. J., 84:497-540, 1996. MR 1404337 (97i:32008)
  • 7. L. van den Dries and P. Speissegger.
    The field of reals with multisummable series and the exponential function.
    Proc. London Math. Soc. (3), 81:513-565, 2000. MR 1781147 (2002k:03057)
  • 8. L. Perko.
    Differential equations and dynamical systems.
    Texts in Applied Mathematics, Vol. 7. Springer-Verlag, Berlin, 2001. MR 1801796 (2001k:34001)
  • 9. Maxwell Rosenlicht.
    Asymptotic solutions of $ Y''=F(x)Y$.
    J. Math. Anal. Appl., 189(3):640-650, 1995. MR 1312544 (95j:34003)
  • 10. J.-P. Rolin, F. Sanz, and R. Schäfke.
    Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures.
    Proc. Lond. Math. Soc. (3), 95(2):413-442, 2007. MR 2352566 (2009b:03100)
  • 11. P. Speissegger.
    The Pfaffian closure of an o-minimal structure.
    J. Reine Angew. Math., 508:189-211, 1999. MR 1676876 (2000j:14093)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34C08, 03C64

Retrieve articles in all journals with MSC (2010): 34C08, 03C64

Additional Information

O. Le Gal
Affiliation: Laboratoire de Mathématiques, Bâtiment Chablais, Campus Scientifique, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France

F. Sanz
Affiliation: Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena, s/n, E-47005 Valladolid, Spain

P. Speissegger
Affiliation: Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada

Keywords: Ordinary differential equations, o-minimal structures
Received by editor(s): October 21, 2011
Published electronically: March 28, 2013
Communicated by: James E. Colliander
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society