Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping


Author: Jitsuro Sugie
Journal: Proc. Amer. Math. Soc. 141 (2013), 2419-2427
MSC (2010): Primary 34D23, 34D45; Secondary 34C15, 37C70
Published electronically: March 28, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition is given for the asymptotic stability of the origin of a pendulum with time-varying friction described by the equation

$\displaystyle x'' + h(t)x' + \sin x = 0, $

where $ h(t)$ is continuous and nonnegative for $ t \ge 0$. This condition is expressed as a double integral on the friction $ h(t)$. The method that is used to obtain the result is Lyapunov's stability theory and phase plane analysis of the positive orbits of an equivalent planar system to the above-mentioned equation.

References [Enhancements On Off] (What's this?)

  • 1. A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 2005. MR 2146587 (2005m:93001)
  • 2. R. J. Ballieu and K. Peiffer, Attractivity of the origin for the equation $ \ddot {x} + f(t,x,\dot {x})\vert\dot {x}\vert^{\alpha }\dot {x} + g(x) = 0$, J. Math. Anal. Appl., 65 (1978), 321-332. MR 0506309 (80a:34057)
  • 3. R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York-Toronto-London, 1953. MR 0061235 (15:794b); (revised) Dover, New York, 2008.
  • 4. F. Brauer and J. Nohel, The Qualitative Theory of Ordinary Differential Equations, W. A. Benjamin, New York-Amsterdam, 1969; (revised) Dover, New York, 1989.
  • 5. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965. MR 0190463 (32:7875)
  • 6. J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York-London-Sydney, 1969. MR 0419901 (54:7918); (revised) Krieger, Malabar, 1980. MR 0587488 (82e:34001)
  • 7. A. Halanay. Differential Equations: Stability, Oscillations, Time Lags, Academic, New York-London, 1966. MR 0216103 (35:6938)
  • 8. L. Hatvani, On the asymptotic stability for a two-dimensional linear nonautonomous differential system, Nonlinear Anal., 25 (1995), 991-1002. MR 1350721 (96k:34105)
  • 9. L. Hatvani, Integral conditions on the asymptotic stability for the damped linear oscillator with small damping, Proc. Amer. Math. Soc., 124 (1996), 415-422. MR 1317039 (96d:34062)
  • 10. L. Hatvani, T. Krisztin and V. Totik, A necessary and sufficient condition for the asymptotic stability of the damped oscillator, J. Differential Equations, 119 (1995), 209-223. MR 1334491 (96k:34104)
  • 11. L. Hatvani and V. Totik, Asymptotic stability of the equilibrium of the damped oscillator, Diff. Integral Eqns., 6 (1993), 835-848. MR 1222304 (94c:34080)
  • 12. A. N. Michel, L. Hou and D. Liu, Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems, Birkhäuser, Boston-Basel-Berlin, 2008. MR 2351563 (2008i:93001)
  • 13. O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Zeits., 32 (1930), 703-728. MR 1545194
  • 14. P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, Acta Math., 170 (1993), 275-307. MR 1226530 (94i:34103)
  • 15. P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators, SIAM J. Math. Anal., 25 (1994), 815-835. MR 1271312 (95c:34092)
  • 16. N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method, Applied Mathematical Sciences, 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. MR 0450715 (56:9008)
  • 17. R. A. Smith, Asymptotic stability of $ x'' + a(t)x' + x = 0$, Quart. J. Math. Oxford (2), 12 (1961), 123-126. MR 0124582 (23:A1894)
  • 18. J. Sugie, Convergence of solutions of time-varying linear systems with integrable forcing term, Bull. Austral. Math. Soc., 78 (2008), 445-462. MR 2472280 (2009k:34102)
  • 19. J. Sugie, Influence of anti-diagonals on the asymptotic stability for linear differential systems, Monatsh. Math., 157 (2009), 163-176. MR 2504784 (2010d:34103)
  • 20. J. Sugie, Global asymptotic stability for damped half-linear oscillators, Nonlinear Anal., 74 (2011), 7151-7167. MR 2833701 (2012g:34124)
  • 21. J. Sugie, S. Hata and M. Onitsuka, Global asymptotic stability for half-linear differential systems with periodic coefficients, J. Math. Anal. Appl., 371 (2010), 95-112. MR 2660989 (2011g:34113)
  • 22. A. G. Surkov, Asymptotic stability of certain two-dimensional linear systems, Differentsial'nye Uravneniya, 20 (1984), 1452-1454. MR 0759607 (85j:34098)
  • 23. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, New York-Berlin-Heidelberg, 1990. MR 1036522 (91b:34002)
  • 24. H. K. Wilson, Ordinary Differential Equations, Introductory and Intermediate Courses Using Matrix Methods, Addison-Wesley, Massachusetts-California-London-Ontario, 1971. MR 0280764 (43:6483)
  • 25. T. Yoshizawa, Stability Theory by Liapunov's Second Method, Math. Soc. Japan, Tokyo, 1966. MR 0208086 (34:7896)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34D23, 34D45, 34C15, 37C70

Retrieve articles in all journals with MSC (2010): 34D23, 34D45, 34C15, 37C70


Additional Information

Jitsuro Sugie
Affiliation: Department of Mathematics, Shimane University, Matsue 690-8504, Japan
Email: jsugie@riko.shimane-u.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11615-1
PII: S 0002-9939(2013)11615-1
Keywords: Asymptotic stability, phase plane analysis, nonlinear oscillator, damped pendulum, growth condition
Received by editor(s): October 20, 2011
Published electronically: March 28, 2013
Additional Notes: This work was supported in part by Grant-in-Aid for Scientific Research No.22540190 from the Japan Society for the Promotion of Science
Communicated by: Yingfei Yi
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.