Partial crossed product description of the -algebras associated with integral domains

Authors:
Giuliano Boava and Ruy Exel

Journal:
Proc. Amer. Math. Soc. **141** (2013), 2439-2451

MSC (2010):
Primary 46L05, 46L55

Published electronically:
April 3, 2013

MathSciNet review:
3043025

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, Cuntz and Li introduced the -algebra associated to an integral domain with finite quotients. In this paper, we show that is a partial group algebra of the group with suitable relations, where is the field of fractions of . We identify the spectrum of these relations and we show that it is homeomorphic to the profinite completion of . By using partial crossed product theory, we reconstruct some results proved by Cuntz and Li. Among them, we prove that is simple by showing that the action is topologically free and minimal.

**1.**Jane Arledge, Marcelo Laca, and Iain Raeburn,*Semigroup crossed products and Hecke algebras arising from number fields*, Doc. Math.**2**(1997), 115–138 (electronic). MR**1451963****2.**J.-B. Bost and A. Connes,*Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory*, Selecta Math. (N.S.)**1**(1995), no. 3, 411–457. MR**1366621**, 10.1007/BF01589495**3.**Nathan Brownlowe, Astrid An Huef, Marcelo Laca, and Iain Raeburn,*Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers*, Ergodic Theory Dynam. Systems**32**(2012), no. 1, 35–62. MR**2873157**, 10.1017/S0143385710000830**4.**Paula B. Cohen,*A 𝐶*-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking*, J. Théor. Nombres Bordeaux**11**(1999), no. 1, 15–30 (English, with English and French summaries). Les XXèmes Journées Arithmétiques (Limoges, 1997). MR**1730430****5.**Joachim Cuntz,*𝐶*-algebras associated with the 𝑎𝑥+𝑏-semigroup over ℕ*, 𝐾-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 201–215. MR**2513338**, 10.4171/060-1/8**6.**Joachim Cuntz and Xin Li,*The regular 𝐶*-algebra of an integral domain*, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 149–170. MR**2732050****7.**Joachim Cuntz and Xin Li,*𝐶*-algebras associated with integral domains and crossed products by actions on adele spaces*, J. Noncommut. Geom.**5**(2011), no. 1, 1–37. MR**2746649**, 10.4171/JNCG/68**8.**J. Cuntz and X. Li,*K-theory for ring -algebras attached to function fields*, arXiv:0911.5023v1, 2009.**9.**M. Dokuchaev and R. Exel,*Associativity of crossed products by partial actions, enveloping actions and partial representations*, Trans. Amer. Math. Soc.**357**(2005), no. 5, 1931–1952. MR**2115083**, 10.1090/S0002-9947-04-03519-6**10.**Ruy Exel,*Circle actions on 𝐶*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence*, J. Funct. Anal.**122**(1994), no. 2, 361–401. MR**1276163**, 10.1006/jfan.1994.1073**11.**Ruy Exel,*Amenability for Fell bundles*, J. Reine Angew. Math.**492**(1997), 41–73. MR**1488064**, 10.1515/crll.1997.492.41**12.**Ruy Exel,*Partial actions of groups and actions of inverse semigroups*, Proc. Amer. Math. Soc.**126**(1998), no. 12, 3481–3494. MR**1469405**, 10.1090/S0002-9939-98-04575-4**13.**Ruy Exel, Marcelo Laca, and John Quigg,*Partial dynamical systems and 𝐶*-algebras generated by partial isometries*, J. Operator Theory**47**(2002), no. 1, 169–186. MR**1905819****14.**B. Julia,*Statistical theory of numbers*, Number theory and physics (Les Houches, 1989) Springer Proc. Phys., vol. 47, Springer, Berlin, 1990, pp. 276–293. MR**1058473**, 10.1007/978-3-642-75405-0_30**15.**Marcelo Laca,*Semigroups of *-endomorphisms, Dirichlet series, and phase transitions*, J. Funct. Anal.**152**(1998), no. 2, 330–378. MR**1608003**, 10.1006/jfan.1997.3166**16.**Marcelo Laca and Machiel van Frankenhuijsen,*Phase transitions on Hecke 𝐶*-algebras and class-field theory over ℚ*, J. Reine Angew. Math.**595**(2006), 25–53. MR**2244797**, 10.1515/CRELLE.2006.043**17.**Marcelo Laca, Nadia S. Larsen, and Sergey Neshveyev,*On Bost-Connes types systems for number fields*, J. Number Theory**129**(2009), no. 2, 325–338. MR**2473881**, 10.1016/j.jnt.2008.09.008**18.**Marcelo Laca and Iain Raeburn,*Semigroup crossed products and the Toeplitz algebras of nonabelian groups*, J. Funct. Anal.**139**(1996), no. 2, 415–440. MR**1402771**, 10.1006/jfan.1996.0091**19.**Marcelo Laca and Iain Raeburn,*A semigroup crossed product arising in number theory*, J. London Math. Soc. (2)**59**(1999), no. 1, 330–344. MR**1688505**, 10.1112/S0024610798006620**20.**Marcelo Laca and Iain Raeburn,*The ideal structure of the Hecke 𝐶*-algebra of Bost and Connes*, Math. Ann.**318**(2000), no. 3, 433–451. MR**1800765**, 10.1007/s002080000107**21.**Marcelo Laca and Iain Raeburn,*Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers*, Adv. Math.**225**(2010), no. 2, 643–688. MR**2671177**, 10.1016/j.aim.2010.03.007**22.**N. S. Larsen and X. Li,*Dilations of semigroup crossed products as crossed products of dilations*, arXiv:1009.5842v1, 2010, to appear in Proc. Amer. Math. Soc.**23.**Xin Li,*Ring 𝐶*-algebras*, Math. Ann.**348**(2010), no. 4, 859–898. MR**2721644**, 10.1007/s00208-010-0502-x**24.**A. Nica,*𝐶*-algebras generated by isometries and Wiener-Hopf operators*, J. Operator Theory**27**(1992), no. 1, 17–52. MR**1241114****25.**Shinji Yamashita,*Cuntz’s 𝑎𝑥+𝑏-semigroup 𝐶*-algebra over ℕ and product system ℂ*-algebras*, J. Ramanujan Math. Soc.**24**(2009), no. 3, 299–322. MR**2568059**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
46L05,
46L55

Retrieve articles in all journals with MSC (2010): 46L05, 46L55

Additional Information

**Giuliano Boava**

Affiliation:
Instituto Nacional de Matemática Pura e Aplicada, 22460-320, Rio de Janeiro/RJ, Brazil

Address at time of publication:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis/SC, Brazil

Email:
gboava@gmail.com

**Ruy Exel**

Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis/SC, Brazil

Email:
r@exel.com.br

DOI:
https://doi.org/10.1090/S0002-9939-2013-11724-7

Received by editor(s):
May 23, 2011

Received by editor(s) in revised form:
October 22, 2011

Published electronically:
April 3, 2013

Additional Notes:
The first author’s research was supported by CNPq, Brazil

The second author’s research was partially supported by CNPq, Brazil

Communicated by:
Marius Junge

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.