Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On a problem of Chen and Liu concerning the prime power factorization of $ n!$


Authors: Johannes F. Morgenbesser and Thomas Stoll
Journal: Proc. Amer. Math. Soc. 141 (2013), 2289-2297
MSC (2010): Primary 11N25; Secondary 11A63, 11B50, 11L07, 11N37
Published electronically: March 29, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a fixed prime $ p$, let $ e_p(n!)$ denote the order of $ p$ in the prime factorization of $ n!$. Chen and Liu (2007) asked whether for any fixed $ m$, one has $ \{e_p(n^2!) \bmod m:\; n\in \mathbb{Z}\}=\mathbb{Z}_m$ and $ \{e_p(q!) \bmod m:\; q$$ \mbox { prime}\}=\mathbb{Z}_m$. We answer these two questions and show asymptotic formulas for $ \char93 \{n<x: n \equiv a \bmod d,\; e_p(n^2!)\equiv r \bmod m\}$ and $ \char93 \{q<x: q$$ \mbox { prime}, q \equiv a \bmod d,\; e_p(q!)\equiv r \bmod m\}$. Furthermore, we show that for each $ h\ge 3$, we have $ \char93 \{n<x: n \equiv a \bmod d,\; e_p(n^h!)\equiv r \bmod m\} \gg x^{4/(3h+1)}$.


References [Enhancements On Off] (What's this?)

  • 1. D. Berend, On the parity of exponents in the factorization of $ n!$, J. Number Theory 64 (1997), no. 1, 13-19. MR 1450483 (98g:11019)
  • 2. D. Berend, G. Kolesnik, Regularity of patterns in the factorization of $ n!$, J. Number Theory 124 (2007), no. 1, 181-192. MR 2320999 (2008d:11082)
  • 3. Y.-G. Chen, On the parity of exponents in the standard factorization of $ n!$, J. Number Theory 100 (2003), no. 2, 326-331. MR 1978460 (2004b:11136)
  • 4. Y.-G. Chen, W. Liu, On the exponents modulo 3 in the standard factorisation of $ n!$, Bull. Austral. Math. Soc. 73 (2006), no. 3, 329-334. MR 2230643 (2007b:11136)
  • 5. Y.-G. Chen, W. Liu, On the prime power factorization of $ n!$, II, J. Number Theory 122 (2007), no. 2, 290-300. MR 2292255 (2008a:11109)
  • 6. Y.-G. Chen, Y.-C. Zhu, On the prime power factorization of $ n!$, J. Number Theory 82 (2000), no. 1, 1-11. MR 1755150 (2001c:11027)
  • 7. L. E. Dickson, History of the theory of numbers, Vol. I: Divisibility and primality, Carnegie Inst. of Washington, Washington, D.C., 1919; republication by Dover, Mineola, 2005. MR 0245499 (39:6807a)
  • 8. M. Drmota, C. Mauduit, J. Rivat, The sum-of-digits function of polynomial sequences,
    J. London Math. Soc. 84 (2011), 81-102. MR 2819691 (2012f:11193)
  • 9. P. Erdős, R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique, 28. Université de Genève, L'Enseignement Mathématique, Geneva, 1980. MR 592420 (82j:10001)
  • 10. A.-M. Legendre, Théorie des nombres, 3e édition, tome 1, Firmin Didot Fréres, Paris, 1830.
  • 11. F. Luca, P. Stănică, On the prime power factorization of $ n!$, J. Number Theory 102 (2003), no. 2, 298-305. MR 1997793 (2004f:11082)
  • 12. B. Martin, C. Mauduit, J. Rivat, Sur les chiffres des nombres premiers, submitted.
  • 13. C. Mauduit, J. Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), 107-148. MR 2545827 (2010j:11119)
  • 14. C. Mauduit, J. Rivat, Sur un problème de Gelfond: La somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591-1646. MR 2680394 (2011j:11137)
  • 15. J. W. Sander, On the parity of exponents in the prime factorization of factorials, J. Number Theory 90 (2001), no. 2, 316-328. MR 1858081 (2002j:11105)
  • 16. T. Stoll, The sum of digits of polynomial values in arithmetic progressions, Functiones et Approximatio Commentarii Mathematici, accepted (Oct. 21, 2011); preprint available from the author's webpage.
  • 17. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Belin, Collection Échelles, 2008. MR 1366197 (97e:11005a)
  • 18. W.-G. Zhai, On the prime power factorization of $ n!$, J. Number Theory 129 (2009), no. 8, 1820-1836. MR 2522706 (2010c:11121)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N25, 11A63, 11B50, 11L07, 11N37

Retrieve articles in all journals with MSC (2010): 11N25, 11A63, 11B50, 11L07, 11N37


Additional Information

Johannes F. Morgenbesser
Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10, A–1040 Wien, Austria – and – Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria
Email: johannes.morgenbesser@tuwien.ac.at

Thomas Stoll
Affiliation: Institut de Mathématiques de Luminy, Université d’Aix-Marseille, 13288 Marseille Cedex 9, France
Email: stoll@iml.univ-mrs.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11751-X
PII: S 0002-9939(2013)11751-X
Keywords: Prime power factorization, $p$-adic valuation, sum of digits, congruences, squares, primes
Received by editor(s): October 21, 2011
Published electronically: March 29, 2013
Additional Notes: The first author was supported by the Austrian Science Foundation FWF, grants S9604 and P21209.
This research was supported by the Agence Nationale de la Recherche, grant ANR-10-BLAN 0103 MUNUM
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.