Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On strong $ P$-points


Authors: Andreas Blass, Michael Hrušák and Jonathan Verner
Journal: Proc. Amer. Math. Soc. 141 (2013), 2875-2883
MSC (2010): Primary 03E05, 03E17, 03E35
DOI: https://doi.org/10.1090/S0002-9939-2013-11518-2
Published electronically: April 3, 2013
MathSciNet review: 3056578
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper investigates the combinatorial property of ultrafilters where the Mathias forcing relativized to them does not add dominating reals. We prove that the characterization due to Hrušák and Minami is equivalent to the strong $ P$-point property. We also consistently construct a $ P$-point that has no rapid Rudin-Keisler predecessor but that is not a strong $ P$-point. These results answer questions of Canjar and Laflamme.


References [Enhancements On Off] (What's this?)

  • 1. A. Blass, Combinatorial Cardinal Characteristics of the Continuum, Handbook of Set Theory (M. Foreman and A. Kanamori, eds.), Springer, Netherlands, 2010, pp. 395-489. MR 2768685
  • 2. A. Blass and S. Shelah, There may be simple P $ {}_{\kappa _1}$- and P $ {}_{\kappa _2}$-points and the Rudin-Keisler ordering may be downward directed, Annals of Pure and Applied Logic 33 (1987), no. 3, 213-243. MR 879489 (88e:03073)
  • 3. D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/1971), no. 1, 1-24. MR 0277371 (43:3104)
  • 4. J. Brendle, Mob families and mad families, Archive for Mathematical Logic 37 (1998), no. 3, 183-197. MR 1619601 (99m:03098)
  • 5. R.M. Canjar, Mathias forcing which does not add dominating reals, Proceedings of the American Mathematical Society 104 (1988), no. 4, 1239-1248. MR 969054 (89k:03054)
  • 6. M. Hrušák and H. Minami, Mathias-Prikry and Laver-Prikry type forcing, 2010, preprint.
  • 7. M. Katětov, Products of filters, Commentationes Mathematicae Universitatis Carolinae 9 (1968), 173-189. MR 0250257 (40:3496)
  • 8. J. Ketonen, On the existence of $ P$-points in the Stone-Čech compactification of integers, Fundamenta Mathematicae 92 (1976), 91-94. MR 0433387 (55:6363)
  • 9. C. Laflamme, Forcing with filters and complete combinatorics, Annals of Pure and Applied Logic 42 (1989), no. 2, 125-163. MR 996504 (90d:03104)
  • 10. C. Laflamme and J.-P. Zhu, The Rudin-Blass ordering of ultrafilters, The Journal of Symbolic Logic 63 (1998), no. 2, 584-592. MR 1627310 (99m:04002)
  • 11. A. Louveau, Sur un article de S. Sirota, Bulletin des Sciences Mathématiques. 2e Série 96 (1972), 3-7. MR 0308326 (46:7440)
  • 12. A.R.D. Mathias, Happy families, Annals of Mathematical Logic 12 (1977), no. 1, 59-111. MR 0491197 (58:10462)
  • 13. A. Miller, Rational perfect set forcing, Contemporary Mathematics 31, Amer. Math. Soc., 1984, 143-159. MR 763899 (86f:03084)
  • 14. G. Mokobodzki, Ultrafiltres rapides sur N. Construction d'une densité relative de deux potentiels comparables, Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny: 1967/68, Exp. 12, Secrétariat mathématique, Paris, 1969, 22 pp. MR 0259148 (41:3790)
  • 15. W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Mathematical Journal 23 (1956), 409-419. MR 0080902 (18:324d)
  • 16. S. M. Sirota, A product of topological groups, and extremal disconnectedness, Matematicheskiĭ Sbornik 79 (121) (1969), 179-192. MR 0242988 (39:4315)
  • 17. P. Vojtáš, On $ \omega ^*$ and absolutely divergent series, Topology Proceedings 19 (1994), 335-348. MR 1369768 (97a:40001)
  • 18. E. Wimmers, The Shelah $ P$-point independence theorem, Israel Journal of Mathematics 43 (1982), no. 1, 28-48. MR 728877 (85e:03118)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03E05, 03E17, 03E35

Retrieve articles in all journals with MSC (2010): 03E05, 03E17, 03E35


Additional Information

Andreas Blass
Affiliation: Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109–1043
Email: ablass@umich.edu

Michael Hrušák
Affiliation: Instituto de Matematicas, UNAM, Apartado postal 61-3, Xangari, 58089, Morelia, Michoacin, Mexico
Email: michael@matmor.unam.mx

Jonathan Verner
Affiliation: Department of Logic, Charles University, Palachovo nám. 2, 116 38 Praha 1, Czech Republic
Email: jonathan.verner@matfyz.cz

DOI: https://doi.org/10.1090/S0002-9939-2013-11518-2
Keywords: Ultrafilter, Mathias forcing, strong $P$-point
Received by editor(s): February 23, 2011
Received by editor(s) in revised form: October 26, 2011
Published electronically: April 3, 2013
Additional Notes: The first author was partially supported by NSF grant DMS-0653696.
The second author was partially supported by PAPIIT grant IN101608 and CONACyT grant 80355.
The third author was partially supported by GAR 401/09/H007 Logické základy sémantiky
Communicated by: Julia Knight
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society