Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A dichotomy for higher-dimensional flows


Authors: A. Arbieto and C. A. Morales
Journal: Proc. Amer. Math. Soc. 141 (2013), 2817-2827
MSC (2010): Primary 37D30; Secondary 37C10
DOI: https://doi.org/10.1090/S0002-9939-2013-11536-4
Published electronically: April 17, 2013
MathSciNet review: 3056572
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the dichotomy between sectional-Axiom A flows and flows with points accumulated by periodic orbits of different indices. Indeed, this is proved for $ C^1$ generic flows whose singularities accumulated by periodic orbits have codimension one. Our result improves the work of M. J. Pacifico and the second author.


References [Enhancements On Off] (What's this?)

  • 1. Abdenur, F., Generic robustness of spectral decompositions, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 2, 213-224. MR 1980311 (2004b:37032)
  • 2. Afraimovich, V. S., Bykov, V. V., Shilnikov, L. P., On attracting structurally unstable limit sets of Lorenz attractor type (Russian), Trudy Moskov. Mat. Obshch. 44 (1982), 150-212. MR 656286 (84a:58058)
  • 3. Bonatti, Ch., Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-193. MR 1749677 (2001j:37063a)
  • 4. Carballo, C., Morales, C., Pacifico, M. J., Homoclinic classes for generic $ C^1$ vector fields, Ergodic Theory Dynam. Systems 23 (2003), no. 2, 403-415. MR 1972228 (2004e:37031)
  • 5. Carballo, C., Morales, C., Pacifico, M. J., Maximal transitive sets with singularities for generic $ C^1$ vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 287-303. MR 1817090 (2002b:37075)
  • 6. Gan, S., Wen, L., Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math. 164 (2006), no. 2, 279-315. MR 2218778 (2007j:37045)
  • 7. Gan, S., Wen, L., Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dynam. Differential Equations 15 (2003), no. 2-3, 451-471. MR 2046726 (2005b:37029)
  • 8. Gan, S., Li, M., Wen, L., Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269. MR 2152388 (2006b:37056)
  • 9. Gan, S., Wen, L., Zhu, S., Indices of singularities of robustly transitive sets, Discrete Contin. Dyn. Syst. 21 (2008), no. 3, 945-957. MR 2399444 (2009a:37065)
  • 10. Guckenheimer, J., A strange, strange attractor, The Hopf bifurcation and its applications, Applied Mathematical Series 19, Springer-Verlag (1976). MR 0494309 (58:13209)
  • 11. Guckenheimer, J., Williams, R., Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 59-72. MR 556582 (82b:58055a)
  • 12. Hayashi, S., Diffeomorphisms in $ \mathcal {F}^1(M)$ satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233-253. MR 1176621 (94d:58081)
  • 13. Hayashi, S., Connecting invariant manifolds and the solution of the $ C^1$-stability and
    $ \Omega $-stability conjectures for flows
    , Ann. of Math. (2) 145 (1997), no. 1, 81-137. MR 1432037 (98b:58096)
  • 14. Hasselblatt, B., Katok, A., Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge (1995). MR 1326374 (96c:58055)
  • 15. Hirsch, M., Pugh, C., Shub, M., Invariant manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977. MR 0501173 (58:18595)
  • 16. Liao, S., Qualitative theory of differentiable dynamical systems. Translated from the Chinese. With a preface by Min-de Cheng. Science Press, Beijing; distributed by American Mathematical Society, Providence, RI, 1996. MR 1449640 (98g:58041)
  • 17. Mañé, R., A proof of the $ C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161-210. MR 932138 (89e:58090)
  • 18. Mañé, R., An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. MR 678479 (84f:58070)
  • 19. Mañé, R., Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383-396. MR 516217 (84b:58061)
  • 20. Metzger, R., Morales, C., Sectional-hyperbolic systems, Ergodic Theory Dynam. Systems 28 (2008), no. 5, 1587-1597. MR 2449545 (2010g:37045)
  • 21. Morales, C. A., Strong stable manifolds for sectional-hyperbolic sets, Discrete Contin. Dyn. Syst. 17 (2007), no. 3, 553-560. MR 2276427 (2008a:37036)
  • 22. Morales, C., Pacifico, M. J., A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1575-1600. MR 2018613 (2005a:37030)
  • 23. Morales, C., Pacifico, M. J., Pujals, E. R., Singular-hyperbolic systems, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3393-3401. MR 1610761 (2000c:37034)
  • 24. Pliss, V. A., A hypothesis due to Smale, Differencial'nye Uravnenija 8 (1972), 268-282. MR 0299909 (45:8957)
  • 25. Pugh, C., An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010-1021. MR 0226670 (37:2257)
  • 26. Shilnikov, L. P., Turaev, D. V., An example of a wild strange attractor, Sb. Math. 189 (1998), no. 1-2, 291-314. MR 1622321 (99d:58126)
  • 27. Shilnikov, L. P., Shilnikov, A. L., Turaev, D., Chua, L., Methods of qualitative theory in nonlinear dynamics. Part II, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884710 (2003d:37002)
  • 28. Wen, L., On the preperiodic set, Discrete Contin. Dynam. Systems 6 (2000), no. 1, 237-241. MR 1739926 (2001g:37035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D30, 37C10

Retrieve articles in all journals with MSC (2010): 37D30, 37C10


Additional Information

A. Arbieto
Affiliation: Instituto de Matématica, Universidade Federal do Rio de Janiero, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil
Email: arbieto@im.ufrj.br

C. A. Morales
Affiliation: Instituto de Matématica, Universidade Federal do Rio de Janiero, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil
Email: morales@impa.br

DOI: https://doi.org/10.1090/S0002-9939-2013-11536-4
Keywords: Sectional-Axiom A, Morse index, vector field
Received by editor(s): August 8, 2011
Received by editor(s) in revised form: November 7, 2011
Published electronically: April 17, 2013
Additional Notes: This work was partially supported by CNPq, CAPES-Prodoc, FAPERJ and PRONEX/DS from Brazil
Communicated by: Yingfei Yi
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society