Balanced metrics and Chow stability of projective bundles over Riemann surfaces

Author:
Reza Seyyedali

Journal:
Proc. Amer. Math. Soc. **141** (2013), 2841-2853

MSC (2010):
Primary 32Q26; Secondary 53C07

Published electronically:
May 1, 2013

MathSciNet review:
3056574

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1980, I. Morrison proved that slope stability of a vector bundle of rank over a compact Riemann surface implies Chow stability of the projectivization of the bundle with respect to certain polarizations. In a previous work, we generalized Morrison's result to higher rank vector bundles over compact algebraic manifolds of arbitrary dimension that admit a constant scalar curvature metric and have a discrete automorphism group. In this article, we give a simple proof for polarizations , where is a positive integer, and the base manifold is a compact Riemann surface of genus .

**[BD]**D. Burns and P. De Bartolomeis,*Stability of vector bundles and extremal metrics*, Invent. Math.**92**(1988), no. 2, 403–407. MR**936089**, 10.1007/BF01404460**[C]**David Catlin,*The Bergman kernel and a theorem of Tian*, Analysis and geometry in several complex variables (Katata, 1997) Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23. MR**1699887****[D1]**S. K. Donaldson,*A new proof of a theorem of Narasimhan and Seshadri*, J. Differential Geom.**18**(1983), no. 2, 269–277. MR**710055****[D2]**S. K. Donaldson,*Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. (3)**50**(1985), no. 1, 1–26. MR**765366**, 10.1112/plms/s3-50.1.1**[D3]**S. K. Donaldson,*Scalar curvature and projective embeddings. I*, J. Differential Geom.**59**(2001), no. 3, 479–522. MR**1916953****[D4]**S. K. Donaldson,*Scalar curvature and projective embeddings. II*, Q. J. Math.**56**(2005), no. 3, 345–356. MR**2161248**, 10.1093/qmath/hah044**[DZ]**Alberto Della Vedova and Fabio Zuddas,*Scalar curvature and asymptotic Chow stability of projective bundles and blowups*, Trans. Amer. Math. Soc.**364**(2012), no. 12, 6495–6511. MR**2958945**, 10.1090/S0002-9947-2012-05587-5**[G]**D. Gieseker,*On the moduli of vector bundles on an algebraic surface*, Ann. of Math. (2)**106**(1977), no. 1, 45–60. MR**466475**, 10.2307/1971157**[H1]**Ying-Ji Hong,*Ruled manifolds with constant Hermitian scalar curvature*, Math. Res. Lett.**5**(1998), no. 5, 657–673. MR**1666868**, 10.4310/MRL.1998.v5.n5.a9**[H2]**Ying-Ji Hong,*Constant Hermitian scalar curvature equations on ruled manifolds*, J. Differential Geom.**53**(1999), no. 3, 465–516. MR**1806068****[H3]**Ying-Ji Hong,*Gauge-fixing constant scalar curvature equations on ruled manifolds and the Futaki invariants*, J. Differential Geom.**60**(2002), no. 3, 389–453. MR**1950172****[L]**Huazhang Luo,*Geometric criterion for Gieseker-Mumford stability of polarized manifolds*, J. Differential Geom.**49**(1998), no. 3, 577–599. MR**1669716****[M]**Ian Morrison,*Projective stability of ruled surfaces*, Invent. Math.**56**(1980), no. 3, 269–304. MR**561975**, 10.1007/BF01390049**[PS]**D. H. Phong and Jacob Sturm,*Stability, energy functionals, and Kähler-Einstein metrics*, Comm. Anal. Geom.**11**(2003), no. 3, 565–597. MR**2015757**, 10.4310/CAG.2003.v11.n3.a6**[PS2]**D. H. Phong and Jacob Sturm,*Scalar curvature, moment maps, and the Deligne pairing*, Amer. J. Math.**126**(2004), no. 3, 693–712. MR**2058389****[RT]**Julius Ross and Richard Thomas,*An obstruction to the existence of constant scalar curvature Kähler metrics*, J. Differential Geom.**72**(2006), no. 3, 429–466. MR**2219940****[S]**Reza Seyyedali,*Balanced metrics and Chow stability of projective bundles over Kähler manifolds*, Duke Math. J.**153**(2010), no. 3, 573–605. MR**2667426**, 10.1215/00127094-2010-032**[S2]**R. Seyyedali, Balanced metrics and Chow stability of projective bundles over Kähler manifolds. II, preprint.**[UY]**K. Uhlenbeck and S.-T. Yau,*On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure Appl. Math.**39**(1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR**861491**, 10.1002/cpa.3160390714**[W]**Xiaowei Wang,*Balance point and stability of vector bundles over a projective manifold*, Math. Res. Lett.**9**(2002), no. 2-3, 393–411. MR**1909652**, 10.4310/MRL.2002.v9.n3.a12**[W2]**Xiaowei Wang,*Canonical metrics on stable vector bundles*, Comm. Anal. Geom.**13**(2005), no. 2, 253–285. MR**2154820****[Z]**Steve Zelditch,*Szegő kernels and a theorem of Tian*, Internat. Math. Res. Notices**6**(1998), 317–331. MR**1616718**, 10.1155/S107379289800021X**[Zh]**Shouwu Zhang,*Heights and reductions of semi-stable varieties*, Compositio Math.**104**(1996), no. 1, 77–105. MR**1420712**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
32Q26,
53C07

Retrieve articles in all journals with MSC (2010): 32Q26, 53C07

Additional Information

**Reza Seyyedali**

Affiliation:
Department of Mathematics, University of California, Irvine, California 92697

Address at time of publication:
Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

Email:
rseyyeda@math.uci.edu, rseyyedali@uwaterloo.ca

DOI:
https://doi.org/10.1090/S0002-9939-2013-11548-0

Received by editor(s):
November 28, 2010

Received by editor(s) in revised form:
November 11, 2011

Published electronically:
May 1, 2013

Communicated by:
Michael Wolf

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.