Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform treatment of Darboux's method and the Heisenberg polynomials


Authors: Sai-Yu Liu, R. Wong and Yu-Qiu Zhao
Journal: Proc. Amer. Math. Soc. 141 (2013), 2683-2691
MSC (2010): Primary 41A60; Secondary 33C15
DOI: https://doi.org/10.1090/S0002-9939-2013-11587-X
Published electronically: March 29, 2013
MathSciNet review: 3056558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the set of Heisenberg polynomials furnishes a simple non-trivial example in the uniform treatment of Darboux's method.


References [Enhancements On Off] (What's this?)

  • 1. X.-X. Bai and Y.-Q. Zhao, A uniform asymptotic expansion for Jacobi polynomials via uniform treatment of Darboux's method, J. Approx. Theory, 148(2007), 1-11. MR 2356572 (2009c:33017)
  • 2. C. F. Dunkl, The Poisson kernel for Heisenberg polynomials on the disk, Math. Z., 187(1984), 527-547. MR 760053 (85m:42027)
  • 3. C. F. Dunkl, Boundary value problems for harmonic functions on the Heisenberg group, Canad. J. Math., 38(1986), 478-512. MR 833580 (87f:22006)
  • 4. A. Erdélyi, Uniform asymptotic expansion of integrals, 149-168, in Analytic Methods in Mathematical Physics, R. P. Gilbert, R. G. Newton, eds., Gordon and Breach, New York, 1970. MR 0336181 (49:957)
  • 5. J. L. Fields, A uniform treatment of Darboux's method, Arch. Rational Mech. Anal., 27(1967), 289-305. MR 0220984 (36:4036)
  • 6. G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79(1973), 373-376. MR 0315267 (47:3816)
  • 7. G. B. Folland and E. M. Stein, Estimates for the $ \bar {\partial }_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27(1974), 429-522. MR 0367477 (51:3719)
  • 8. G. Gasper, Orthogonality of certain functions with respect to complex-valued weights, Canad. J. Math., 33(1981), 1261-1270. MR 638380 (83a:33014)
  • 9. P. C. Greiner, Spherical harmonics on the Heisenberg group, Canad. Math. Bull., 23(1980), 383-396. MR 602590 (82e:43009)
  • 10. R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3(1980), no. 2, 821-843. MR 0578375 (81h:22010)
  • 11. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956. MR 0010757 (6:65f)
  • 12. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • 13. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010. MR 2723248 (2012a:33001)
  • 14. G. Szegő, Orthogonal Polynomials, 4th ed., American Mathematical Society, Providence, Rhode Island, 1975. MR 0372517 (51:8724)
  • 15. N. M. Temme, Uniform asymptotic expansion for a class of polynomials biorthogonal on the unit circle, Constr. Approx., 2(1986), 369-376. MR 892162 (88e:42047)
  • 16. S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Birkhäuser, Boston, 1998. MR 1633042 (99h:43001)
  • 17. R. Wong, Asymptotic Approximations of Integrals, Academic Press, Boston, 1989. MR 1016818 (90j:41061)
  • 18. R. Wong and Y.-Q. Zhao, On a uniform treatment of Darboux's method, Constr. Approx., 21(2005), 225-255. MR 2107940 (2005h:41064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 41A60, 33C15

Retrieve articles in all journals with MSC (2010): 41A60, 33C15


Additional Information

Sai-Yu Liu
Affiliation: Department of Mathematics, ZhongShan University, GuangZhou 510275, People’s Republic of China

R. Wong
Affiliation: Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kow- loon, Hong Kong

Yu-Qiu Zhao
Affiliation: Department of Mathematics, ZhongShan University, GuangZhou 510275, People’s Republic of China
Email: stszyq@mail.sysu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2013-11587-X
Keywords: Heisenberg polynomials, Darboux's method, uniform asymptotic expansion, confluent hypergeometric function, Bessel function
Received by editor(s): August 18, 2011
Received by editor(s) in revised form: October 22, 2011
Published electronically: March 29, 2013
Additional Notes: The research of the third author was supported in part by the National Natural Science Foundation of China under grant numbers 10471154 and 10871212
Communicated by: Walter Van Assche
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society