Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Singular integrals on Carleson measure spaces $ {CMO}^p$ on product spaces of homogeneous type

Authors: Ji Li and Lesley A. Ward
Journal: Proc. Amer. Math. Soc. 141 (2013), 2767-2782
MSC (2010): Primary 42B35; Secondary 42B20
Published electronically: April 25, 2013
MathSciNet review: 3056567
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the setting of product spaces $ \widetilde {M}$ of homogeneous type, we prove that every product non-isotropic smooth (NIS) operator $ T$ is bounded on the generalized Carleson measure space  $ {\rm CMO}^p(\widetilde {M})$ of Han, Li and Lu for $ p_0 < p < 1$. Here $ p_0$ depends on the homogeneous dimensions of the measures on factors of the product space  $ \widetilde {M}$ and on the regularity of the quasi-metrics on factors of $ \widetilde {M}$. The $ L^p$ boundedness for $ 1<p<\infty $ of the class of NIS operators was developed in both the one-parameter case and the multiparameter case by Nagel and Stein, and the $ H^p$ boundedness was established in the multiparameter case by Han, Li and Lu.

References [Enhancements On Off] (What's this?)

  • [C] M. Christ, A $ T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628. MR 1096400 (92k:42020)
  • [CF] S.-Y. A. Chang and R. Fefferman, A continuous version of the duality of $ H^1$ and BMO on the bidisc, Ann. of Math. 112 (1980), 179-201. MR 584078 (82a:32009)
  • [CW] R.R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., 242, Springer, Berlin, 1971. MR 0499948 (58:17690)
  • [DH] D. Deng, Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Mathematics, 1966, Springer, Berlin, 2009. MR 2467074 (2010i:43005)
  • [DJS] G. David, J.L. Journé and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. MR 850408 (88f:47024)
  • [F] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130. MR 898053 (90e:42030)
  • [FS] R. Fefferman and E.M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), 117-143. MR 664621 (84d:42023)
  • [FL] S.H. Ferguson and M.T. Lacey, A characterization of product BMO by commutators, Acta Math. 189 (2002), 143-160. MR 1961195 (2004e:42026)
  • [HLL1] Y. Han, J. Li and G. Lu, Duality of multiparameter Hardy space $ H^p$ on spaces of homogeneous type, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Vol. IX (2010), 645-685. MR 2789471 (2012f:42040)
  • [HLL2] Y. Han, J. Li and G. Lu, Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type, Trans. Amer. Math. Soc. 365 (2013), 319-360. MR 2984061
  • [HLLW] Y. Han, J. Li, G. Lu and P.Y. Wang, $ H^p\rightarrow H^p$ boundedness implies $ H^p\rightarrow L^p$ boundedness, Forum Math. 23 (2011), 729-756. MR 2820388 (2012f:42041)
  • [HL1] Y. Han and G. Lu, Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with flag singular integrals, arXiv:0801.1701.
  • [HL2] Y. Han and G. Lu, Some Recent Works on Multiparameter Hardy Space Theory and Discrete Littlewood-Paley Analysis, Trends in Partial Differential Equations, ALM 10, 99-191, Higher Education Press and International Press (2010), Beijing-Boston. MR 2648281 (2011e:42043)
  • [HLY] Y. Han, G. Lu and D. Yang, Product theory on spaces of homogeneous type, unpublished manuscript.
  • [HMY] Y. Han, D. Müller and D. Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), 1505-1537. MR 2269253 (2007g:42035)
  • [K] K. Koenig, On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian, Amer. J. Math. 124 (2002), 129-197. MR 1879002 (2002m:32061)
  • [MS] R.A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. MR 546296 (81c:32017b)
  • [NRSW] A. Nagel, J.-P. Rosay, E.M. Stein and S. Wainger, Estimates for the Bergman and Szegö kernels in $ \mathbb{C}^2$, Ann. of Math. 129 (1989), 113-149. MR 979602 (90g:32028)
  • [NS01a] A. Nagel and E.M. Stein, The $ \Box _b$-heat equation on pseudoconvex manifolds of finite type in $ \mathbb{C}^2$, Math. Z. 238 (2001), 37-88. MR 1860735 (2002h:32031)
  • [NS01b] A. Nagel and E.M. Stein, Differentiable control metrics and scaled bump functions,
    J. Differential Geom. 57 (2001), 465-492. MR 1882665 (2003i:58003)
  • [NS04] A. Nagel and E.M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana 20 (2004), 531-561. MR 2073131 (2006i:42023)
  • [NS06] A. Nagel and E.M. Stein, The $ \bar {\partial }_b$-complex on decoupled boundaries in $ \mathbb{C}^n$, Ann. of Math. (2) 164 (2006), 649-713. MR 2247970 (2007d:32036)
  • [NSW] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields I. Basic properties, Acta Math. 155 (1985), 103-147. MR 793239 (86k:46049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B35, 42B20

Retrieve articles in all journals with MSC (2010): 42B35, 42B20

Additional Information

Ji Li
Affiliation: Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China

Lesley A. Ward
Affiliation: School of Mathematics and Statistics, University of South Australia, Mawson Lakes SA 5095, Australia

Keywords: Carleson measure space, Calder\'on's reproducing formula, singular integral operators, non-isotropic smooth operators, product spaces of homogeneous type
Received by editor(s): November 1, 2011
Published electronically: April 25, 2013
Additional Notes: The first author was supported by the National Natural Science Foundation (grant No. 11001275), by the China Postdoctoral Science Foundation (grant No. 20100480819), and by a postdoctoral fellowship from the University of South Australia.
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society