Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Regularity of nonlinear equations for fractional Laplacian


Authors: Aliang Xia and Jianfu Yang
Journal: Proc. Amer. Math. Soc. 141 (2013), 2665-2672
MSC (2010): Primary 35J25, 47G30, 35B45, 35J70
DOI: https://doi.org/10.1090/S0002-9939-2013-11734-X
Published electronically: April 26, 2013
MathSciNet review: 3056556
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove that any $ H^s(\Omega )$ solution $ u$ of the problem

$\displaystyle (-\Delta )^s u=f(u)\,\, {\rm in}\,\,\Omega , \quad u = 0 \,\, {\rm on}\,\, \partial \Omega ,$ (1)

belongs to $ L^\infty (\Omega )$ for the nonlinearity of $ f(t)$ being subcritical and critical. This implies that the solution $ u$ is classical if $ f(t)$ is $ C^{1,\gamma }$ for some $ 0<\gamma <1$.

References [Enhancements On Off] (What's this?)

  • 1. H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151. MR 539217 (80i:35135)
  • 2. X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal. 238 (2006), no. 2, 709-733. MR 2253739 (2007d:35078)
  • 3. X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates. Preprint arXiv:1012.0867, 2010.
  • 4. X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. in Math. 224 (2010), no. 5, 2052-2093. MR 2646117 (2011c:35106)
  • 5. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493 (2009k:35096)
  • 6. A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), no. 8, 1353-1384. MR 2825595
  • 7. E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 643158 (84i:35070)
  • 8. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. MR 1814364 (2001k:35004)
  • 9. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67-112. MR 2270163 (2008a:35041)
  • 10. Xiping Zhu and Jianfu Yang, Regularity for quasilinear elliptic equations involving critical Sobolev exponents, J. Sys. Sci. & Math. Sci. 9 (1989), no. 1, 47-52. MR 994753 (90e:35027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J25, 47G30, 35B45, 35J70

Retrieve articles in all journals with MSC (2010): 35J25, 47G30, 35B45, 35J70


Additional Information

Aliang Xia
Affiliation: Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
Email: xiaaliang@sina.com

Jianfu Yang
Affiliation: Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
Email: jfyang\textunderscore2000@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-2013-11734-X
Keywords: Regularity, $L^\infty$ bounds, fractional Laplacian
Received by editor(s): February 6, 2011
Published electronically: April 26, 2013
Additional Notes: The second author is supported by National Natural Sciences Foundations of China, grant No. 11271170, and the GAN PO 555 program of Jiangxi.
Communicated by: James E. Colliander
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society