Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Inequivalent Cantor sets in $ R^{3}$ whose complements have the same fundamental group


Authors: Dennis J. Garity and Dušan Repovš
Journal: Proc. Amer. Math. Soc. 141 (2013), 2901-2911
MSC (2010): Primary 57M30, 57M05; Secondary 57N10, 54E45
DOI: https://doi.org/10.1090/S0002-9939-2013-11911-8
Published electronically: April 10, 2013
MathSciNet review: 3056580
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For each Cantor set $ C$ in $ R^{3}$, all points of which have bounded local genus, we show that there are infinitely many inequivalent Cantor sets in $ R^{3}$ with the complement having the same fundamental group as the complement of $ C$. This answers a question from Open Problems in Topology and has as an application a simple construction of nonhomeomorphic open $ 3$-manifolds with the same fundamental group. The main techniques used are analysis of local genus of points of Cantor sets, a construction for producing rigid Cantor sets with simply connected complement, and manifold decomposition theory. The results presented give an argument that for certain groups $ G$, there are uncountably many nonhomeomorphic open $ 3$-manifolds with fundamental group $ G$.


References [Enhancements On Off] (What's this?)

  • [AS89] F. D. Ancel and M. P. Starbird, The shrinkability of Bing-Whitehead decompositions, Topology 28:3 (1989), 291-304. MR 1014463 (90g:57014)
  • [An20] M. L. Antoine, Sur la possibilité d'étendre l'homéomorphie de deux figures à leur voisinages, C. R. Acad. Sci. Paris 171 (1920), 661-663.
  • [Ar66] S. Armentrout, Decompositions of $ \mathbf {E}^{3}$ with a compact 0-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165-177. MR 0195074 (33:3279)
  • [Ba92] A. Babich, Scrawny Cantor sets are not definable by tori, Proc. Amer. Math. Soc. 115 (1992), 829-836. MR 1106178 (92i:57012)
  • [BC87] M. Bestvina and D. Cooper, A wild Cantor set as the limit set of a conformal group action on $ S^{3}$, Proc. Amer. Math. Soc. 99:4 (1987), 623-626. MR 877028 (88b:57015)
  • [Bi61] R. H. Bing, Tame Cantor sets in $ R^{3}$, Pacific J. Math. 11 (1961), 435-446. MR 0130679 (24:A539)
  • [Bl51] W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276-297. MR 0040659 (12:730c)
  • [Da86] R. J. Daverman, Decompositions of Manifolds, Pure and Appl. Math. 124, Academic Press, Orlando, FL, 1986. MR 872468 (88a:57001)
  • [DO86] D. G. DeGryse and R. P. Osborne, A wild Cantor set in $ E\sp {n}$ with simply connected complement, Fund. Math. 86 (1974), 9-27. MR 0375323 (51:11518)
  • [Di68] R. F. Dickman, Jr., Some characterizations of the Freudenthal compactification of a semicompact space, Proc. Amer. Math. Soc. 19 (1968), 631-633. MR 0225290 (37:884)
  • [Fr42] H. Freudenthal, Neuaufbau der Endentheorie, Ann. of Math. (2) 43 (1942), 261-279. MR 0006504 (3:315a)
  • [GR07] D. J. Garity and D. Repovš, Cantor set problems, Open Problems in Topology. II (E. Pearl, ed.), Elsevier B. V., Amsterdam, 2007, pp. 676-678.
  • [GRŽ05] D. Garity, D. Repovš, and M. Željko, Uncountably many inequivalent Lipschitz homogeneous Cantor sets in $ R^{3}$, Pacific J. Math. 222:2 (2005), 287-299. MR 2225073 (2006m:54056)
  • [GRŽ06] -, Rigid Cantor sets in $ R^{3}$ with simply connected complement, Proc. Amer. Math. Soc. 134:8 (2006), 2447-2456. MR 2213719 (2007a:54020)
  • [Ki58] A. Kirkor, Wild 0-dimensional sets and the fundamental group, Fund. Math. 45 (1958), 228-236. MR 0102783 (21:1569)
  • [KM] J. M. Kister and D. R. McMillan, Jr., Locally euclidean factors of $ E^{4}$ which cannot be imbedded in $ E^{3}$, Ann. of Math. (2) 76 (1962), 541-546. MR 0144322 (26:1868)
  • [Ma66] J. M. Martin, A rigid sphere, Fund. Math. 59 (1966), 117-121. MR 0224075 (36:7122)
  • [Mc62] D. R. McMillan, Jr., Some contractible open $ 3$-manifolds, Trans. Amer. Math. Soc. 102:2 (1962), 373-382. MR 0137105 (25:561)
  • [Os66] R. P. Osborne, Embedding Cantor sets in a manifold, Part I: Tame Cantor sets in $ R^n$, Michigan Math. J. 13 (1966), 57-63. MR 0187225 (32:4678)
  • [RS72] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744 (50:3236)
  • [Sh68] R. B. Sher, Concerning wild Cantor sets in $ R^{3}$, Proc. Amer. Math. Soc. 19 (1968), 1195-1200. MR 0234438 (38:2755)
  • [Sl74] A. C. Shilepsky, A rigid Cantor set in $ \mathbb{E}^{3}$, Bull. Acad. Polon. Sci. 22 (1974), 223-224. MR 0345110 (49:9849)
  • [Si65] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. Thesis, Princeton Univ., Princeton, 1965. MR 2615648
  • [Sk86] R. Skora, Cantor sets in $ S^{3}$ with simply connected complements, Topology Appl. 24 (1986), 181-188. MR 872489 (87m:57009)
  • [Wr79] D. G. Wright, Cantor sets in $ 3$-manifolds, Rocky Mountain J. Math. 9 (1979), 377-383. MR 519952 (80j:57011)
  • [Wr86] -, Rigid sets in manifolds, Geometric and Algebraic Topology, Banach Center Publ. 18, PWN, Warsaw, 1986, pp. 161-164. MR 925863 (89a:57019)
  • [Wr86a] -, Rigid sets in $ E^n$, Pacific J. Math. 121 (1986), 245-256. MR 815045 (87b:57011)
  • [Wr89] -, Bing-Whitehead Cantor sets, Fund. Math. 132 (1989), 105-116. MR 1002625 (90d:57020)
  • [Že00] M. Željko, On embeddings of Cantor sets into Euclidean spaces, Ph.D. thesis, University of Ljubljana, Ljubljana, Slovenia, 2000.
  • [Že01] -, On defining sequences for Cantor sets, Topology Appl. 113:1-3 (2001), 321-325. MR 1821859 (2002d:57013)
  • [Že05] -, Genus of a Cantor set, Rocky Mountain J. Math. 35:1 (2005), 349-366. MR 2117612 (2006e:57022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M30, 57M05, 57N10, 54E45

Retrieve articles in all journals with MSC (2010): 57M30, 57M05, 57N10, 54E45


Additional Information

Dennis J. Garity
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
Email: garity@math.oregonstate.edu

Dušan Repovš
Affiliation: Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, P. O. Box 2964, Ljubljana, Slovenia 1001
Email: dusan.repovs@guest.arnes.si

DOI: https://doi.org/10.1090/S0002-9939-2013-11911-8
Keywords: Cantor set, rigidity, local genus, defining sequence, end, open $3$-manifold, fundamental group
Received by editor(s): November 2, 2011
Published electronically: April 10, 2013
Additional Notes: The authors were supported in part by the Slovenian Research Agency grants P1-0292-0101, J1-2057-0101 and BI-US/11-12-023. The first author was also supported in part by National Science Foundation grants DMS 0852030 and DMS 1005906
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society