Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Triviality of some representations of $ \operatorname{MCG}(S_g)$ in $ GL(n,\mathbb{C}), \operatorname{Diff}(S^2)$ and $ \operatorname{Homeo}(\mathbb{T}^2)$

Authors: John Franks and Michael Handel
Journal: Proc. Amer. Math. Soc. 141 (2013), 2951-2962
MSC (2010): Primary 20F65, 37E30; Secondary 20F29
Published electronically: May 6, 2013
MathSciNet review: 3068948
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show the triviality of representations of the mapping class group of a genus $ g$ surface in $ GL(n,\mathbb{C}), \operatorname {Diff}(S^2)$ and $ \operatorname {Homeo}(\mathbb{T}^2)$ when appropriate restrictions on the genus $ g$ and the size of $ n$ hold. For example, if $ S$ is a surface of finite type with genus $ g \ge 3$ and $ \phi : \operatorname {MCG}(S) \to GL(n,\mathbb{C})$ is a homomorphism, then $ \phi $ is trivial provided $ n < 2g.$ We also show that if $ S$ is a closed surface with genus $ g \ge 7$, then every homomorphism $ \phi : \operatorname {MCG}(S) \to \operatorname {Diff}(S^2)$ is trivial and that if $ g \ge 3$, then every homomorphism $ \phi : \operatorname {MCG}(S)\to \operatorname {Homeo}(\mathbb{T}^2)$ is trivial.

References [Enhancements On Off] (What's this?)

  • 1. Javier Aramayona and Juan Souto.
    Homomorphisms between mapping class groups.
  • 2. Martin R. Bridson.
    On the dimension of $ {\rm CAT}(0)$ spaces where mapping class groups act.
    To appear in Journal für die reine und angewandte Mathematik.
  • 3. L.E.J. Brouwer.
    Aufzahlung der periodischen Transformationen des Torus.
    21:1352-1356, 1919.
  • 4. Benson Farb and Dan Margalit.
    A Primer on Mapping Class Groups.
    Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 2011. MR 2850125 (2012h:57032)
  • 5. Louis Funar.
    Two questions on mapping class groups.
    Proc. Amer. Math. Soc., 139(1):375-382, 2011. MR 2729098 (2012a:57002)
  • 6. C. S. Hartzman.
    Nonsingular periodic flows on $ T^{3}$ and periodic homeomorphisms of $ T^{2}$.
    Canad. Math. Bull., 24(1):23-28, 1981. MR 611204 (83k:58072)
  • 7. Mustafa Korkmaz.
    Low-dimensional linear representations of mapping class groups.
  • 8. Mustafa Korkmaz.
    Low-dimensional homology groups of mapping class groups: A survey.
    Turkish J. Math., 26(1):101-114, 2002. MR 1892804 (2003f:57002)
  • 9. Kamlesh Parwani.
    $ C^1$ actions on the mapping class groups on the circle.
    Algebr. Geom. Topol., 8(2):935-944, 2008. MR 2443102 (2010c:37061)
  • 10. Jerome Powell.
    Two theorems on the mapping class group of a surface.
    Proc. Amer. Math. Soc., 68(3):347-350, 1978. MR 0494115 (58:13045)
  • 11. William P. Thurston.
    A generalization of the Reeb stability theorem.
    Topology, 13:347-352, 1974. MR 0356087 (50:8558)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20F65, 37E30, 20F29

Retrieve articles in all journals with MSC (2010): 20F65, 37E30, 20F29

Additional Information

John Franks
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730

Michael Handel
Affiliation: Department of Mathematics, Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468

Received by editor(s): July 26, 2011
Received by editor(s) in revised form: November 14, 2011
Published electronically: May 6, 2013
Additional Notes: The first author was supported in part by NSF grant DMS0099640.
The second author was supported in part by NSF grant DMS0103435.
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society