Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Spectral geometry of cosmological and event horizons for Kerr-Newman-de Sitter metrics

Authors: Martin Engman and Gerardo A. Santana
Journal: Proc. Amer. Math. Soc. 141 (2013), 3305-3311
MSC (2010): Primary 58J50; Secondary 83C15, 83C57
Published electronically: June 10, 2013
MathSciNet review: 3068983
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Laplace spectra of the intrinsic instantaneous metrics on the event and cosmological horizons of a Kerr-Newman-de Sitter space-time and prove that the spectral data from these horizons uniquely determine the metric among all such space-times. This is accomplished by exhibiting formulae relating the parameters of the space-time metric to the traces of invariant and equivariant Green's operators associated with these Laplacians. In particular, an interesting explicit formula for the cosmological constant is found.

References [Enhancements On Off] (What's this?)

  • 1. D. Batic and H. Schmid, Heun equation, Teukolsky equation, and type-D metrics, J. Math. Phys. 48 (2007), no. 4, 042502, 23. MR 2319887, 10.1063/1.2720277
  • 2. Sean M. Carroll, The cosmological constant, Living Rev. Relativ. 4 (2001), 2001-1, 80 pp. (electronic). MR 1810924, 10.12942/lrr-2001-1
  • 3. P. C. W. Davies, Thermodynamic phase transitions of Kerr-Newman black holes in de Sitter space, Classical Quantum Gravity 6 (1989), no. 12, 1909–1914. MR 1028391
  • 4. Martin Engman and Ricardo Cordero-Soto, Intrinsic spectral geometry of the Kerr-Newman event horizon, J. Math. Phys. 47 (2006), no. 3, 033503, 6. MR 2219796, 10.1063/1.2174290
  • 5. Martin Engman, New spectral characterization theorems for 𝑆², Pacific J. Math. 154 (1992), no. 2, 215–229. MR 1159507
  • 6. Martin Engman, Trace formulae for 𝑆¹ invariant Green’s operators on 𝑆², Manuscripta Math. 93 (1997), no. 3, 357–368. MR 1457734, 10.1007/BF02677477
  • 7. Martin Engman, Sharp bounds for eigenvalues and multiplicities on surfaces of revolution, Pacific J. Math. 186 (1998), no. 1, 29–37. MR 1665055, 10.2140/pjm.1998.186.29
  • 8. Frieman, J., et al., Dark energy and the accelerating universe, Annual Review of Astronomy and Astrophysics, Vol. 46, 385-432 (2008).
  • 9. Valeri P. Frolov and Igor D. Novikov, Black hole physics, Fundamental Theories of Physics, vol. 96, Kluwer Academic Publishers Group, Dordrecht, 1998. Basic concepts and new developments; Chapter 4 and Section 9.9 written jointly with N. Andersson. MR 1668599
  • 10. G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D (3) 15 (1977), no. 10, 2738–2751. MR 0459479
  • 11. R. A. Konoplya and A. Zhidenko, Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background, Phys. Rev. D 76 (2007), no. 8, 084018, 6. MR 2366001, 10.1103/PhysRevD.76.084018
  • 12. Hans-Peter Nollert, Quasinormal modes: the characteristic “sound” of black holes and neutron stars, Classical Quantum Gravity 16 (1999), no. 12, R159–R216. MR 1730765, 10.1088/0264-9381/16/12/201
  • 13. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., et al., Measurements of $ \Omega $ and $ \Lambda $ from $ 42$ High-Redshift Supernovae, 1999. Astrophys. J. 517:565-586.
  • 14. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, 1998. Astron. J. 116:1009-1038.
  • 15. Robinson, D. C., Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34, 905, 1975.
  • 16. Smarr, L., Surface geometry of charged rotating black holes, Phys. Rev. D7 289 (1973).
  • 17. Hisao Suzuki, Eiichi Takasugi, and Hiroshi Umetsu, Perturbations of Kerr-de Sitter black holes and Heun’s equations, Progr. Theoret. Phys. 100 (1998), no. 3, 491–505. MR 1664413, 10.1143/PTP.100.491
  • 18. Teukolsky, S., Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29, 1114 (1972).
  • 19. Steve Zelditch, The inverse spectral problem for surfaces of revolution, J. Differential Geom. 49 (1998), no. 2, 207–264. MR 1664907
  • 20. Zel'dovich, Y.B. (1967), Cosmological constant and the theory of elementary particles, Sov. Phys. Usp. 11, 381-393 (1968).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58J50, 83C15, 83C57

Retrieve articles in all journals with MSC (2010): 58J50, 83C15, 83C57

Additional Information

Martin Engman
Affiliation: Departamento de Ciencias y Tecnología, Universidad Metropolitana, San Juan, Puerto Rico 00928
Email: um{\textunderscore},

Gerardo A. Santana
Affiliation: Departamento de Ciencias y Tecnología, Universidad Metropolitana, San Juan, Puerto Rico 00928

Received by editor(s): October 5, 2011
Received by editor(s) in revised form: December 10, 2011
Published electronically: June 10, 2013
Additional Notes: The second author thanks María del Rio for her support during the writing of this paper. This work was partially supported by the NSF grants Model Institutes for Excellence and AGMUS Institute of Mathematics at UMET
Dedicated: For Becky and Mom
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.