Asymptotic stability of the wave equation on compact manifolds and locally distributed viscoelastic dissipation

Authors:
Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti and Flávio A. F. Nascimento

Journal:
Proc. Amer. Math. Soc. **141** (2013), 3183-3193

MSC (2010):
Primary 35L05, 34Dxx, 35A27

DOI:
https://doi.org/10.1090/S0002-9939-2013-11869-1

Published electronically:
May 29, 2013

Erratum:
Proc. Amer. Math. Soc. **145** (2017), 4097-4097.

MathSciNet review:
3068971

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the asymptotic stability of the wave equation on a compact Riemannian manifold subject to locally distributed viscoelastic effects on a subset . Assuming that the well-known geometric control condition holds and supposing that the relaxation function is bounded by a function that decays exponentially to zero, we show that the solutions of the corresponding partial viscoelastic model decay exponentially to zero. We give a new geometric proof extending the prior results in the literature from the Euclidean setting to compact Riemannian manifolds (with or without boundary).

**[BAR-LE-RAU]**C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary.*SIAM J. Control Optim.*30 (1992), no. 5, 1024-1065. MR**1178650 (94b:93067)****[BEL]**M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation,*Annales de la Faculté des Sciences de Toulouse*,**XII**(3), 2003, 267-301. MR**2030088 (2005b:35169)****[CA-OQ]**M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation.*SIAM J. Control Optim.*42 (2003), no. 4, 1310-1324. MR**2044797 (2005d:35257)****[CA-DO-FU-SO]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Uniform stabilization of the wave equation on compact surfaces and locally distributed damping,*Methods Appl. Anal.*15(4) (2008), 405-426. MR**2550070 (2010m:35285)****[CA-DO-FU-SO-1]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Uniform stabilization of the wave equation on compact surfaces and locally distributed damping,*Transactions of AMS*361(9) (2009), 4561-4580. MR**2506419 (2010e:58030)****[CA-DO-FU-SO-2]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result.*Arch. Ration. Mech. Anal.*197 (2010), no. 3, 925-964. MR**2679361 (2012a:35331)****[CHR]**H. Christianson, Semiclassical non-concentration near hyperbolic orbits,*J. Funct. Anal.*246 (2007), no. 2, 145-195. MR**2321040 (2008k:58058)****[DA]**C. M. Dafermos, Asymptotic behavior of solutions of evolution equations. Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977), pp. 103-123, Publ. Math. Res. Center Univ. Wisconsin, 40, Academic Press, New York-London, 1978. MR**513814 (80i:35019)****[DA-LA-TO]**M. Daoulatli, I. Lasiecka and D. Toundykov, Uniform energy decay for a wave equation with partialy supported nonlinear boundary dissipation without growth restrictions, DCDS-S, 2, 1 (2009). MR**2481581 (2010f:35227)****[DEH-LE-ZUA]**B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation.*Anna. Sci. Ec. Norm. Super.*36, 525-551 (2003). MR**2013925 (2004i:35223)****[HI]**M. Hitrik, Expansions and eigenfrequencies for damped wave equations,*Journées équations aux Dérivées Partielles (Plestin-les-Grèves, 2001)*, Exp. No. VI, 10 pp., Univ. Nantes, Nantes, 2001. MR**1843407 (2002h:58050)****[GE]**P. Gerárd, Microlocal defect measures,*Com. Par. Diff. Eq*. 16 (1991), 1761-1794. MR**1135919 (92k:35027)****[GES-MES]**A. Guesmia and S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories,*Nonlinear Analysis: Real World Applications*13 (2012), 476-485. MR**2846857 (2012i:35213)****[LE]**G. Lebeau, Equations des ondes amorties, Algebraic Geometric Methods in Maths. Physics, pp. 73-109, 1996. MR**1385677 (97i:58173)****[MAR]**P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping.*Rev. Mat. Complutense*12(1) (1999), 251-283. MR**1698906 (2000d:93037)****[MI]**L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation.*SIAM J. Control Optim*. 41 (2002), no. 5, 1554-1566. MR**1971962 (2004b:93115)****[RI-SA]**J. E. Muñoz Rivera and A. Peres Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials.*Quart. Appl. Math*. 59 (2001), no. 3, 557-578. MR**1848535 (2002f:35038)****[NA]**M. Nakao, Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains. New trends in the theory of hyperbolic equations, 213-299, Oper. Theory Adv. Appl., 159, Birkhäuser, Basel (2005). MR**2175918 (2006i:35250)****[NA1]**M. Nakao, Energy decay for the wave equation with boundary and localized dissipations in exterior domains,*Math. Nachr.*278(7-8) (2005), 771-783. MR**2141956 (2006a:35185)****[RAU-TAY]**J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds.*Comm. Pure Appl. Math.*28(4) (1975), 501-523. MR**0397184 (53:1044a)****[QIN]**T. Qin, Asymptotic behavior of a class of abstract semilinear integrodifferential equations and applications.*J. Math. Anal. Appl.*233 (1999), no. 1, 130-147. MR**1684377 (2000a:45023)****[TOUN]**D. Toundykov, Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary,*Nonlinear Analysis T. M. A.*67(2) (2007), 512-544. MR**2317185 (2008f:35257)****[TRI-YAO]**R. Triggiani and P. F. Yao, Carleman estimates with no lower-order terms for general Riemannian wave equations. Global uniqueness and observability in one shot,*Appl. Math. and Optim.*46 (Sept./Dec. 2002), 331-375. Special issue dedicated to J. L. Lions. MR**1944764 (2003j:93042)****[ZUA]**E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping.*Comm. Partial Differential Equations*15 (1990), no. 2, 205-235. MR**1032629 (91b:35076)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35L05,
34Dxx,
35A27

Retrieve articles in all journals with MSC (2010): 35L05, 34Dxx, 35A27

Additional Information

**Marcelo M. Cavalcanti**

Affiliation:
Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

Email:
mmcavalcanti@uem.br

**Valéria N. Domingos Cavalcanti**

Affiliation:
Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

Email:
vndcavalcanti@uem.br

**Flávio A. F. Nascimento**

Affiliation:
Department of Mathematics, State University of Ceará-FAFIDAM, 62930-000, Limoeiro do Norte, CE, Brazil

Email:
flavio.falcao@uece.br

DOI:
https://doi.org/10.1090/S0002-9939-2013-11869-1

Keywords:
Wave equation,
compact Riemannian manifold,
viscoelastic distributed damping

Received by editor(s):
November 28, 2011

Published electronically:
May 29, 2013

Additional Notes:
Research of the first author was partially supported by the CNPq Grant 300631/2003-0

Research of the second author was partially supported by the CNPq Grant 304895/2003-2

The third author, a doctorate student at the State University of Maringá, was partially supported by a grant of CNPq, Brazil

Communicated by:
James E. Colliander

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.