Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Partially overdetermined problem in some integral equations


Authors: Boqiang Lv, Fengquan Li and Weilin Zou
Journal: Proc. Amer. Math. Soc. 141 (2013), 3073-3081
MSC (2010): Primary 45K05, 45P05; Secondary 35J67
DOI: https://doi.org/10.1090/S0002-9939-2013-12192-1
Published electronically: June 7, 2013
MathSciNet review: 3068961
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the partially overdetermined problem in integral equations as follows:

\begin{align*}\begin {cases}u(x)=A \int _{\Omega }\frac {1}{\vert x-y\vert^{n-\a... ...mega , \\ u=C,~~&x\in \Gamma \subseteq \partial \Omega , \end{cases}\end{align*}    

where $ 0<\alpha <n, ~p>\frac {n}{n-\alpha }, ~A,~ B,~ C $ are positive constants, $ \Omega \subset R^n\ (n\geq 2)$ is a bounded domain with $ \partial \Omega \in C^1$, and $ \Gamma $ is a proper open set of $ \partial \Omega $. Under some assumptions on the geometry of $ \Gamma $, we prove that $ \Omega $ must be a ball and $ u$ is radially symmetric and monotone decreasing with respect to the radius.

References [Enhancements On Off] (What's this?)

  • [1] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962), 303-315. MR 0143162 (26 #722)
  • [2] B. Brandolini, C. Nitsch, P. Salani, and C. Trombetti, Serrin-type overdetermined problems: an alternative proof, Arch. Ration. Mech. Anal. 190 (2008), no. 2, 267-280. MR 2448319 (2010g:35214), https://doi.org/10.1007/s00205-008-0119-3
  • [3] Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. MR 2200258 (2006m:45007a), https://doi.org/10.1002/cpa.20116
  • [4] Wenxiong Chen and Congming Li, Regularity of solutions for a system of integral equations, Commun. Pure Appl. Anal. 4 (2005), no. 1, 1-8. MR 2126275 (2006g:45006)
  • [5] Wenxiong Chen and Congming Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 4, 949-960. MR 2510000 (2010i:35078), https://doi.org/10.1016/S0252-9602(09)60079-5
  • [6] Wenxiong Chen and Congming Li, Methods on nonlinear elliptic equations, AIMS Series on Differential Equations & Dynamical Systems, vol. 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010. MR 2759774 (2012k:35002)
  • [7] Wenxiong Chen and Jiuyi Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl. 377 (2011), no. 2, 744-753. MR 2769171 (2012a:35056), https://doi.org/10.1016/j.jmaa.2010.11.035
  • [8] A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differential Equations 31 (2008), no. 3, 351-357. MR 2366129 (2009i:35223), https://doi.org/10.1007/s00526-007-0115-8
  • [9] Ilaria Fragalà and Filippo Gazzola, Partially overdetermined elliptic boundary value problems, J. Differential Equations 245 (2008), no. 5, 1299-1322. MR 2436831 (2011a:35162), https://doi.org/10.1016/j.jde.2008.06.014
  • [10] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209-243. MR 544879 (80h:35043)
  • [11] Xiaotao Huang, Dongsheng Li, and Lihe Wang, Symmetry of integral equation systems with Bessel kernel on bounded domains, Nonlinear Anal. 74 (2011), no. 2, 494-500. MR 2733225 (2011k:45006), https://doi.org/10.1016/j.na.2010.09.004
  • [12] Xiaotao Huang, Dongsheng Li, and Lihe Wang, Symmetry of integral equation systems on bounded domains, J. Math. Anal. Appl. 376 (2011), no. 2, 443-450. MR 2747769 (2011k:45008), https://doi.org/10.1016/j.jmaa.2010.12.005
  • [13] Dongsheng Li, Gerhard Ströhmer, and Lihe Wang, Symmetry of integral equations on bounded domains, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3695-3702. MR 2529876 (2010f:45020), https://doi.org/10.1090/S0002-9939-09-09987-0
  • [14] Guozhen Lu and Jiuyi Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal. 75 (2012), no. 6, 3036-3048. MR 2890967, https://doi.org/10.1016/j.na.2011.11.036
  • [15] Xiaolong Han, Guozhen Lu, and Jiuyi Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations 252 (2012), no. 2, 1589-1602. MR 2853552, https://doi.org/10.1016/j.jde.2011.07.037
  • [16] Li Ma and Dezhong Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl. 342 (2008), no. 2, 943-949. MR 2445251 (2009m:35151), https://doi.org/10.1016/j.jmaa.2007.12.064
  • [17] Li Ma and Lin Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. MR 2592284 (2011f:35015), https://doi.org/10.1007/s00205-008-0208-3
  • [18] Wolfgang Reichel, Characterization of balls by Riesz-potentials, Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 235-245. MR 2491802 (2010c:31007), https://doi.org/10.1007/s10231-008-0073-6
  • [19] James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318. MR 0333220 (48 #11545)
  • [20] H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal. 43 (1971), 319-320. MR 0333221 (48 #11546)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 45K05, 45P05, 35J67

Retrieve articles in all journals with MSC (2010): 45K05, 45P05, 35J67


Additional Information

Boqiang Lv
Affiliation: College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, People’s Republic of China
Email: lbq86@yahoo.com.cn

Fengquan Li
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
Email: fqli@dlut.edu.cn

Weilin Zou
Affiliation: College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, People’s Republic of China
Email: zwl267@yahoo.com.cn

DOI: https://doi.org/10.1090/S0002-9939-2013-12192-1
Keywords: Integral equation, moving planes in integral forms, symmetry of domain and solution, partially overdetermined problem
Received by editor(s): August 29, 2011
Published electronically: June 7, 2013
Communicated by: James E. Colliander
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society