Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A note on sheaves without self-extensions on the projective $ n$-space


Authors: Dieter Happel and Dan Zacharia
Journal: Proc. Amer. Math. Soc. 141 (2013), 3383-3390
MSC (2010): Primary 14F05, 16E10; Secondary 16E65, 16G20, 16G70
DOI: https://doi.org/10.1090/S0002-9939-2013-11305-5
Published electronically: June 19, 2013
MathSciNet review: 3080161
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\bf P}^n$ be the projective $ n$-space over the complex numbers. In this note we show that an indecomposable rigid coherent sheaf on $ {\bf P}^n$ has a trivial endomorphism algebra. This generalizes a result of Drézet for $ n=2.$


References [Enhancements On Off] (What's this?)

  • [1] Luchezar L. Avramov and David Eisenbud, Regularity of modules over a Koszul algebra, J. Algebra 153 (1992), no. 1, 85-90. MR 1195407 (93k:16018), https://doi.org/10.1016/0021-8693(92)90149-G
  • [2] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422 (96c:16015)
  • [3] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I., Algebraic bundles over $ {\bf P}^n$ and problems in linear algebra, Funct. Anal. Appl., 12 (1979), 212-214.
  • [4] J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur $ {\bf P}_2({\bf C})$, Math. Ann. 275 (1986), no. 1, 25-48 (French). MR 849052 (88b:14014), https://doi.org/10.1007/BF01458581
  • [5] E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323-333. MR 632842 (83i:13006), https://doi.org/10.2307/1971296
  • [6] E. L. Green, R. Martinez-Villa, I. Reiten, Ø. Solberg, and D. Zacharia, On modules with linear presentations, J. Algebra 205 (1998), no. 2, 578-604. MR 1632765 (99i:16075), https://doi.org/10.1006/jabr.1997.7402
  • [7] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124 (89e:16035)
  • [8] Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443. MR 675063 (84d:16027), https://doi.org/10.2307/1999116
  • [9] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2006. MR 2244106 (2007f:14013)
  • [10] R. Martínez-Villa, Koszul algebras and sheaves over projective space, arXiv:math.RT/
    0405538.
  • [11] Roberto Martínez-Villa and Dan Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003), no. 2, 671-697. MR 1995131 (2004h:16005), https://doi.org/10.1016/S0021-8693(03)00261-8
  • [12] Roberto Martínez-Villa and Dan Zacharia, Auslander-Reiten sequences, locally free sheaves and Chebysheff polynomials, Compos. Math. 142 (2006), no. 2, 397-408. MR 2218901 (2006m:14022), https://doi.org/10.1112/S0010437X05001703

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14F05, 16E10, 16E65, 16G20, 16G70

Retrieve articles in all journals with MSC (2010): 14F05, 16E10, 16E65, 16G20, 16G70


Additional Information

Dieter Happel
Affiliation: Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
Email: happel@mathematik.tu-chemnitz.de

Dan Zacharia
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244-0001
Email: zacharia@syr.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11305-5
Keywords: Exterior algebra, projective space, coherent sheaves, vector bundles, exceptional objects
Received by editor(s): December 4, 2010
Received by editor(s) in revised form: December 20, 2011
Published electronically: June 19, 2013
Additional Notes: The second author is supported by the NSA grant H98230-11-1-0152.
Communicated by: Harm Derksen
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society