Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging


Authors: Habib Ammari, Josselin Garnier and Knut Sølna
Journal: Proc. Amer. Math. Soc. 141 (2013), 3431-3446
MSC (2010): Primary 35R30, 35B30
DOI: https://doi.org/10.1090/S0002-9939-2013-11590-X
Published electronically: June 11, 2013
MathSciNet review: 3080166
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider resolution estimates in both the linearized conductivity problem and the wave imaging problem. Our purpose is to provide explicit formulas for the resolving power of the measurements in the presence of measurement noise. We show that the low-frequency regime in wave imaging and the inverse conductivity problem are very sensitive to measurement noise, while high frequencies increase stability in wave imaging.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun (editors), Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964.
  • 2. H. Ammari, J. Garnier, H. Kang, M. Lim, and K. Sølna, Multistatic imaging of extended targets, SIAM J. Imaging Science, 5 (2012), 564-600. MR 2971173
  • 3. H. Ammari, J. Garnier, and K. Sølna, Limited view resolving power of conductivity imaging from boundary measurements, submitted.
  • 4. H. Ammari, H. Kang, and H. Lee, Layer Potential Techniques in Spectral Analysis, Mathematical Surveys and Monographs, Vol. 153, Amer. Math. Soc., Providence, RI, 2009. MR 2488135 (2010j:47062)
  • 5. H. Ammari, H. Kang, M. Lim, and H. Zribi, Conductivity interface problems. Part I: Small perturbations of an interface, Trans. Amer. Math. Soc., 362 (2010), 2435-2449. MR 2584606
  • 6. G. Bao, Y. Chen, and F. Ma, Regularity and stability for the scattering map of a linearized inverse medium problem, J. Math. Anal. Appl., 247 (2000), 255-271. MR 1766937 (2001f:35423)
  • 7. E. Beretta and E. Francini, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of thin inhomogeneities, in Inverse problems: theory and applications, Contemp. Math., 333, Amer. Math. Soc., Providence, RI, 2003. MR 2032006 (2005a:35263)
  • 8. M. Bertero, P. Boccacci, and M. Piana, Resolution and super-resolution in inverse diffraction, in Inverse Problems of Wave Propagation and Diffraction, Lecture Notes in Physics, Vol. 486, 1-17, Springer, Berlin, 1997. MR 1601171 (98j:65073)
  • 9. L. Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), R99-R136. MR 1955896
  • 10. L. Borcea, G. Papanicolaou, and F. G. Vasquez, Edge illumination and imaging of extended reflectors, SIAM J. Imaging Sci., 1 (2008), 75-114. MR 2475826 (2010a:15028)
  • 11. M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
  • 12. D. C. Dobson, Estimates on resolution and stabilization for the linearized inverse conductivity problem, Inverse Problems, 8 (1992), 71-81. MR 1153128 (92m:35269)
  • 13. D. C. Dobson and F. Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography: dependence on the input current patterns, SIAM J. Appl. Math., 54 (1994), 1542-1560. MR 1301272 (95g:35212)
  • 14. G. Derveaux, G. Papanicolaou, and C. Tsogka, Resolution and denoising in near-field imaging, Inverse Problems, 22 (2006), 1437-1456. MR 2249472 (2007b:76110)
  • 15. H.W. Engl, M. Hanke, and A Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996. MR 1408680 (97k:65145)
  • 16. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (editors), Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • 17. B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518. MR 2679585 (2011h:35316)
  • 18. S. Hou, K. Sølna, and H. Zhao, A direct imaging algorithm for extended targets, Inverse Problems, 22 (2006), 1151-1178. MR 2249458 (2007b:78009)
  • 19. S. Hou, K. Sølna, and H. Zhao, Imaging of location and geometry for extended targets using the response matrix, J. Comput. Phys., 199 (2004), 317-338. MR 2081006 (2005k:78016)
  • 20. D. Isaacson and E. L. Isaacson, Comment on A.-P. Calderón paper: ``On an inverse boundary value problem'', Math. Comp., 52 (1989), 553-559. MR 962208 (90f:35201)
  • 21. V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flows. I, C. Bardos and A. Fursikov, eds., International Math. Series, Vol. 6, 339-362, Springer, 2008. MR 2459261 (2009g:35038)
  • 22. P. Kearey, M. Brooks, and I. Hill, An Introduction to Geophysical Exploration, 3rd edition, Blackwell Science, Oxford, 2002.
  • 23. N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444. MR 1862200 (2002h:35339)
  • 24. S. Nagayasu, G. Uhlmann, and J.-N. Wang, Depth dependent stability estimates in electrical impedance tomography, Inverse Problems, 25 (2009), 075001. MR 2519853 (2010g:65195)
  • 25. D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Review, 25 (1983), 379-393. MR 710468 (84i:94016)
  • 26. R. Wong, Asymptotic expansion of $ \int _0^{\pi /2} J_\nu ^2 (\lambda \cos \theta ) d\theta $, Math. Comput., 50 (1988), 229-234. MR 917830 (89g:41022)
  • 27. H. Zhao, Analysis of the response matrix for an extended target, SIAM J. Appl. Math., 64 (2004), 725-745. MR 2068119 (2005a:74050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35R30, 35B30

Retrieve articles in all journals with MSC (2010): 35R30, 35B30


Additional Information

Habib Ammari
Affiliation: Department of Mathematics and Applications, École Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France
Email: habib.ammari@ens.fr

Josselin Garnier
Affiliation: Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13, France
Email: garnier@math.jussieu.fr

Knut Sølna
Affiliation: Department of Mathematics, University of California, Irvine, California 92697
Email: ksolna@math.uci.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11590-X
Keywords: Inverse conductivity problem, wave imaging, resolution, stability
Received by editor(s): August 26, 2011
Received by editor(s) in revised form: December 6, 2011
Published electronically: June 11, 2013
Additional Notes: This work was supported by the ERC Advanced Grant Project MULTIMOD–267184.
Communicated by: Walter Craig
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society