Higher dimensional expanding maps and toral extensions

Author:
Eugen Mihailescu

Journal:
Proc. Amer. Math. Soc. **141** (2013), 3467-3475

MSC (2010):
Primary 37D20, 37A35, 37C40

Published electronically:
June 12, 2013

MathSciNet review:
3080169

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that expanding endomorphisms on arbitrary tori are 1-sided Bernoulli with respect to their corresponding measure of maximal entropy and are thus, measurably, as far from invertible as possible. This applies in particular to expanding linear toral endomorphisms and their smooth perturbations. Then we study toral extensions of expanding toral endomorphisms, in particular probabilistic systems on skew products, and prove that under certain not too restrictive conditions on the extension cocycle, these skew products are 1-sided Bernoulli too. We also give a large class of examples of group extensions of expanding maps in higher dimensions, for which we check the conditions on the extension cocycle.

**1.**R. L. Adler and P. C. Shields,*Skew products of Bernoulli shifts with rotations*, Israel J. Math.**12**(1972), 215–222. MR**0315090****2.**Jonathan Ashley, Brian Marcus, and Selim Tuncel,*The classification of one-sided Markov chains*, Ergodic Theory Dynam. Systems**17**(1997), no. 2, 269–295. MR**1444053**, 10.1017/S0143385797069745**3.**Henk Bruin and Jane Hawkins,*Rigidity of smooth one-sided Bernoulli endomorphisms*, New York J. Math.**15**(2009), 451–483. MR**2558792****4.**Zaqueu Coelho and William Parry,*Shift endomorphisms and compact Lie extensions*, Bol. Soc. Brasil. Mat. (N.S.)**29**(1998), no. 1, 163–179. MR**1620172**, 10.1007/BF01245872**5.**Karma Dajani and Jane Hawkins,*Rohlin factors, product factors, and joinings for 𝑛-to-one maps*, Indiana Univ. Math. J.**42**(1993), no. 1, 237–258. MR**1218714**, 10.1512/iumj.1993.42.42012**6.**Christopher Hoffman,*An endomorphism whose square is Bernoulli*, Ergodic Theory Dynam. Systems**24**(2004), no. 2, 477–494. MR**2054190**, 10.1017/S0143385703000361**7.**Christopher Hoffman and Daniel Rudolph,*Uniform endomorphisms which are isomorphic to a Bernoulli shift*, Ann. of Math. (2)**156**(2002), no. 1, 79–101. MR**1935841**, 10.2307/3597184**8.**Yitzhak Katznelson,*Ergodic automorphisms of 𝑇ⁿ are Bernoulli shifts*, Israel J. Math.**10**(1971), 186–195. MR**0294602****9.**L. A. Bunimovich, S. G. Dani, R. L. Dobrushin, M. V. Jakobson, I. P. Kornfeld, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinai, J. Smillie, Yu. M. Sukhov, and A. M. Vershik,*Dynamical systems, ergodic theory and applications*, Second, expanded and revised edition, Encyclopaedia of Mathematical Sciences, vol. 100, Springer-Verlag, Berlin, 2000. Edited and with a preface by Sinai; Translated from the Russian; Mathematical Physics, I. MR**1758456****10.**Ricardo Mañé,*Ergodic theory and differentiable dynamics*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR**889254****11.**Ricardo Mañé,*On the Bernoulli property for rational maps*, Ergodic Theory Dynam. Systems**5**(1985), no. 1, 71–88. MR**782789**, 10.1017/S0143385700002765**12.**Eugen Mihailescu,*On some coding and mixing properties for a class of chaotic systems*, Monatsh. Math.**167**(2012), no. 2, 241–255. MR**2954528**, 10.1007/s00605-011-0347-8**13.**Eugen Mihailescu,*Unstable directions and fractal dimension for skew products with overlaps in fibers*, Math. Z.**269**(2011), no. 3-4, 733–750. MR**2860262**, 10.1007/s00209-010-0761-y**14.**Eugen Mihailescu,*Asymptotic distributions of preimages for endomorphisms*, Ergodic Theory Dynam. Systems**31**(2011), no. 3, 911–934. MR**2794954**, 10.1017/S0143385710000155**15.**Eugen Mihailescu and Mariusz Urbanski,*Relations between stable dimension and the preimage counting function on basic sets with overlaps*, Bull. Lond. Math. Soc.**42**(2010), no. 1, 15–27. MR**2586963**, 10.1112/blms/bdp092**16.**Donald Ornstein,*Bernoulli shifts with the same entropy are isomorphic*, Advances in Math.**4**(1970), 337–352. MR**0257322****17.**D. S. Ornstein and B. Weiss,*Statistical properties of chaotic systems*, Bull. Amer. Math. Soc. (N.S.)**24**(1991), no. 1, 11–116. With an appendix by David Fried. MR**1023980**, 10.1090/S0273-0979-1991-15953-7**18.**William Parry,*Automorphisms of the Bernoulli endomorphism and a class of skew-products*, Ergodic Theory Dynam. Systems**16**(1996), no. 3, 519–529. MR**1395050**, 10.1017/S0143385700008944**19.**William Parry,*Skew products of shifts with a compact Lie group*, J. London Math. Soc. (2)**56**(1997), no. 2, 395–404. MR**1489145**, 10.1112/S0024610797005462**20.**W. Parry and M. Pollicott,*Stability of mixing for toral extensions of hyperbolic systems*, Tr. Mat. Inst. Steklova**216**(1997), no. Din. Sist. i Smezhnye Vopr., 354–363; English transl., Proc. Steklov Inst. Math.**1 (216)**(1997), 350–359. MR**1632190****21.**William Parry and Peter Walters,*Endomorphisms of a Lebesgue space*, Bull. Amer. Math. Soc.**78**(1972), 272–276. MR**0294604**, 10.1090/S0002-9904-1972-12954-9**22.**V. A. Rohlin,*Lectures on the entropy theory of transformations with invariant measure*, Uspehi Mat. Nauk**22**(1967), no. 5 (137), 3–56 (Russian). MR**0217258****23.**Daniel J. Rudolph,*Classifying the isometric extensions of a Bernoulli shift*, J. Analyse Math.**34**(1978), 36–60 (1979). MR**531270**, 10.1007/BF02790007**24.**David Ruelle,*The thermodynamic formalism for expanding maps*, Comm. Math. Phys.**125**(1989), no. 2, 239–262. MR**1016871****25.**Michael Shub,*Endomorphisms of compact differentiable manifolds*, Amer. J. Math.**91**(1969), 175–199. MR**0240824****26.**Peter Walters,*An introduction to ergodic theory*, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR**648108**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37D20,
37A35,
37C40

Retrieve articles in all journals with MSC (2010): 37D20, 37A35, 37C40

Additional Information

**Eugen Mihailescu**

Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania

Email:
Eugen.Mihailescu@imar.ro

DOI:
https://doi.org/10.1090/S0002-9939-2013-11597-2

Keywords:
Toral endomorphisms,
expanding maps,
1-sided Bernoullicity,
measures of maximal entropy,
group extensions,
cohomological conditions

Received by editor(s):
November 14, 2011

Received by editor(s) in revised form:
December 10, 2011

Published electronically:
June 12, 2013

Additional Notes:
This work was supported by CNCS - UEFISCDI, project PN II - IDEI PCE 2011-3-0269

Communicated by:
Bryna Kra

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.