On soliton solutions to a class of Schrödinger-K V systems

Authors:
Chungen Liu and Youquan Zheng

Journal:
Proc. Amer. Math. Soc. **141** (2013), 3477-3484

MSC (2010):
Primary 35J10, 35J50, 35J60

Published electronically:
June 12, 2013

MathSciNet review:
3080170

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider a class of coupled nonlinear Schrödinger-KdV systems in the whole space via the Nehari manifold method. The existence of nontrivial solutions with both of the components nonzero is obtained.

**1.**Antonio Ambrosetti and Eduardo Colorado,*Standing waves of some coupled nonlinear Schrödinger equations*, J. Lond. Math. Soc. (2)**75**(2007), no. 1, 67–82. MR**2302730**, 10.1112/jlms/jdl020**2.**John Albert and Jaime Angulo Pava,*Existence and stability of ground-state solutions of a Schrödinger-KdV system*, Proc. Roy. Soc. Edinburgh Sect. A**133**(2003), no. 5, 987–1029. MR**2018323**, 10.1017/S030821050000278X**3.**João-Paulo Dias, Mário Figueira, and Filipe Oliveira,*Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity*, C. R. Math. Acad. Sci. Paris**348**(2010), no. 19-20, 1079–1082 (English, with English and French summaries). MR**2735011**, 10.1016/j.crma.2010.09.018**4.**João-Paulo Dias, Mário Figueira, and Filipe Oliveira,*Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system*, Nonlinear Anal.**73**(2010), no. 8, 2686–2698. MR**2674102**, 10.1016/j.na.2010.06.049**5.**I. Ekeland,*On the variational principle*, J. Math. Anal. Appl.**47**(1974), 324–353. MR**0346619****6.**Bo Ling Guo,*Existence and uniqueness of the global solution of the Cauchy problem and the periodic initial value problem for a class of coupled systems of KdV-nonlinear Schrödinger equations*, Acta Math. Sinica**26**(1983), no. 5, 513–532 (Chinese). MR**747175****7.**Bo Ling Guo and Ya Ping Wu,*Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation*, J. Differential Equations**123**(1995), no. 1, 35–55. MR**1359911**, 10.1006/jdeq.1995.1156**8.**Man Kam Kwong,*Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝}=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, 10.1007/BF00251502**9.**T. Kawahara, N. Sugimoto and T. Kakutani,*Nonlinear interaction between short and long capillary-gravity waves*, J. Phys. Soc. Jpn., 39(1975), 1379-1386.**10.**Lin Chen,*Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation*, J. Partial Differential Equations**12**(1999), no. 1, 11–25. MR**1681850****11.**V. Makhankov,*On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation*, Phys. Lett. A, 50(1974), 42-44.**12.**L. A. Maia, E. Montefusco, and B. Pellacci,*Positive solutions for a weakly coupled nonlinear Schrödinger system*, J. Differential Equations**229**(2006), no. 2, 743–767. MR**2263573**, 10.1016/j.jde.2006.07.002**13.**L. A. Maia, E. Montefusco, and B. Pellacci,*Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system*, Commun. Contemp. Math.**10**(2008), no. 5, 651–669. MR**2446894**, 10.1142/S0219199708002934**14.**K. Nishikawa, H. Hojo, K. Mima and H. Ikezi,*Coupled nonlinear electron-plasma and ion-acoustic waves*, Phys. Rev. Lett., 33(1974), 148-151.**15.**Wei-Ming Ni and Izumi Takagi,*Locating the peaks of least-energy solutions to a semilinear Neumann problem*, Duke Math. J.**70**(1993), no. 2, 247–281. MR**1219814**, 10.1215/S0012-7094-93-07004-4**16.**Jaime Angulo and J. Fabio Montenegro,*Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves*, Nonlinearity**13**(2000), no. 5, 1595–1611. MR**1781810**, 10.1088/0951-7715/13/5/310**17.**Susanna Terracini and Gianmaria Verzini,*Solutions of prescribed number of zeroes to a class of superlinear ODE’s systems*, NoDEA Nonlinear Differential Equations Appl.**8**(2001), no. 3, 323–341. MR**1841262**, 10.1007/PL00001451**18.**Michel Willem,*Minimax theorems*, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1400007****19.**N. Yajima and J. Satsuma,*Soliton solutions in a diatomic lattice system*, Prog. Theor. Phys., 62(1979), 370-378.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35J10,
35J50,
35J60

Retrieve articles in all journals with MSC (2010): 35J10, 35J50, 35J60

Additional Information

**Chungen Liu**

Affiliation:
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

Email:
liucg@nankai.edu.cn

**Youquan Zheng**

Affiliation:
School of Mathematical Sciences, Nankai University, Tianjin 300071, People’s Republic of China

Email:
zhengyq@mail.nankai.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-2013-11629-1

Keywords:
Schr\"odinger-KdV systems,
Nehari manifold,
nontrivial solution

Received by editor(s):
March 30, 2011

Received by editor(s) in revised form:
December 11, 2011

Published electronically:
June 12, 2013

Additional Notes:
The first author was partially supported by NFSC (11071127, 10621101), the 973 Program of STM of China (2011CB808002) and SRFDP

Communicated by:
Yingfei Yi

Article copyright:
© Copyright 2013
American Mathematical Society