EMBEDDING UNIVERSAL COVERS OF GRAPH MANIFOLDS
IN PRODUCTS OF TREES

DAVID HUME AND ALESSANDRO SISTO

(Communicated by Alexander N. Dranishnikov)

Abstract. We prove that the universal cover of any graph manifold quasi-isometrically embeds into a product of three trees. In particular, we show that the Assouad-Nagata dimension of the universal cover of any closed graph manifold is 3, proving a conjecture of Smirnov.

A graph manifold is a compact connected 3-manifold (possibly with boundary) which admits a decomposition into Seifert fibred pieces when cut along a collection of embedded tori and/or Klein bottles. In particular, a graph manifold is a 3-manifold whose geometric decomposition admits no hyperbolic part. For this reason the class of graph manifold groups is rigid within the class of 3-manifold groups \cite{KL98}; moreover, such groups are classified up to quasi-isometry \cite{BN08}.

More details on graph manifolds and proofs of the above results can be found in \cite{BDM09}, \cite{Ger94} and \cite{KL98}.

We show the following:

Theorem 1. The universal cover of any graph manifold quasi-isometrically embeds in the product of three metric trees.

One may wish to compare this theorem with the result by Buyalo and Schroeder \cite{BS05} that \mathbb{H}^3 can be quasi-isometrically embedded in the product of three infinite valence simplicial trees. (This was refined to three infinite binary trees by \cite{BDS07}.)

As an application, we determine the Assouad-Nagata dimension (\dim_{AN}) - as defined by Assouad, \cite{Ass82} - of the universal cover of closed graph manifolds. We denote the asymptotic Assouad-Nagata dimension by \asdim_{AN}. Recall that the Assouad-Nagata dimension bounds from above the asymptotic dimension, first introduced by Gromov in \cite{Gro93}. However, asymptotic dimension and asymptotic Assouad-Nagata dimension can differ radically; see for instance the examples in \cite{BDL06}. The asymptotic Assouad-Nagata dimension of a group also bounds from above the dimension of its asymptotic cones \cite{DH08}, and if a group has finite Assouad-Nagata dimension, then it has compression exponent 1 \cite{Gal08}.

The asymptotic dimension of universal covers of closed graph-manifolds is known to be 3, as mentioned in \cite{Smi10}, in view of results in \cite{BD08}. Also, Smirnov \cite{Smi10} showed that their Assouad-Nagata dimension is finite (at most 7) and conjectured that it actually equals 3. Theorem 1 implies his conjecture:

Corollary 2. If \tilde{M} is the universal cover of a closed graph-manifold, then

$$\dim_{AN}\tilde{M} = \asdim_{AN}\tilde{M} = 3.$$
Proof. Asymptotic dimension never exceeds either of the aforementioned dimensions, so this provides the lower bound of 3 in both cases. Also, as M is a 3-manifold, $\dim_{\text{AN}} \widetilde{M} \leq \max\{\text{asdim}_{\text{AN}} \widetilde{M}, 3\}$. Results in [LS05] prove $\text{asdim}_{\text{AN}} X \leq n$ when X is an n–fold product of trees and $\text{asdim}_{\text{AN}} A \leq \text{asdim}_{\text{AN}} B$ whenever A admits a quasi-isometric embedding into B, so we get the upper bound using Theorem [LS05] □

A graph manifold is said to be non–geometric if its decomposition into Seifert fibred pieces is non-trivial. Notice that if the decomposition is trivial, then the universal cover is quasi-isometric to the product of a tree with \mathbb{R}.

Question 3. Does every non–geometric graph manifold have a fundamental group of asymptotic dimension 3?

Proof of Theorem [LS05]. We only have to consider non–geometric flip graph manifolds. In fact - at the level of universal covers - any graph manifold is quasi-isometric to a flip graph manifold [KL98]. We do not need the definition of such manifolds, as we will recall the essential properties required. Let \widetilde{M} be a flip graph manifold and let T be its Bass-Serre tree. The universal cover \widetilde{M} of M is constructed by suitably gluing certain metric spaces $X_v = F_v \times \mathbb{R}$, for v a vertex in T. Each F_v is the universal cover of a compact surface with non-empty boundary and so it admits a metric retraction $r_v : F_v \to T_v$, where $T_v \subseteq F_v$ is a tree, with the further properties that r_v is injective when restricted to any boundary component of F_v and there exists μ (not depending on v) such that for each $x \in F_v$ we have $d_{F_v}(x, r_v(x)) \leq \mu$. Finally, the gluings are performed as follows. Let v, v' be adjacent vertices. Then there exist parametrisations $\gamma_v : \mathbb{R} \to F_v, \gamma_{v'} : \mathbb{R} \to F_{v'}$ of boundary components of $F_v, F_{v'}$ so that $(\gamma_v(t), u) \in F_v \times \mathbb{R}$ is identified with $(\gamma_{v'}(u), t) \in F_{v'} \times \mathbb{R}$ for each $t, u \in \mathbb{R}$. This is explained, for example, in [BN08].

Step 1. The trees. The first tree will just be the Bass-Serre tree $T_0 = T$. Let us define the other two trees, T_1, T_2, as follows.

We can subdivide the vertices of T into disjoint families V_1, V_2 such that if $v, v' \in V_i$, then $d_T(v, v')$ is even. Set $T_i = \bigcup_{v \in V_i} T_v$. We now wish to define an equivalence relation \sim on T_i, and we will set $\sim_i = T_i/\sim$. Suppose that $v, v' \in V_i, v \neq v'$ and there exists w such that $d_T(v, w) = d_T(v', w) = 1$. We will set $x \sim_d x'$, for $x \in T_v, x' \in T_{v'}$, if there exist y, y' with $r_v(y) = x, r_{v'}(y') = x'$ such that the points y, y' are identified with $(y, 0) \in F_v \times \mathbb{R}, (y', 0) \in F_{v'} \times \mathbb{R}$ have the same \mathbb{R}–coordinate. To ensure an equivalence relation, we set \sim to be the transitive closure of \sim_d.

It is very easy to check that $T_i = T_i/\sim$ is a metric tree with only countably many branching points. In fact, it can be described as the increasing union of metric spaces $\{X_k\}_{k \in \mathbb{N}}$ such that X_0 is a tree and X_{k+1} is obtained from X_k by identifying a line in X_k with a line in some tree.

Step 2. The components of the embedding. Define $f_0 : \widetilde{M} \to T_0$ to be any map such that for all $x \in M, x \in F_{f_0(x)} \times \mathbb{R}$ and define $f_i : \widetilde{M} \to T_i$ as follows. For each v, we let $\pi_v : F_v \times \mathbb{R} \to F_v$ be the projection on the first factor and as usual denote the equivalence classes of \sim with square brackets.

If $x \in F_v \times \mathbb{R}$ for some $v \in V_i$, then set $f_i(x) = [r_v(\pi_v(x))].$ Otherwise we have $x \in F_w \times \mathbb{R}$ for $w \notin V_i$. Let $v \in V_i$ be any vertex such that $d_T(v, w) = 1$. Set $f_i(x) = [p]$, where $p \in T_v$ is such that $(p, 0)$ has, as a point in $F_w \times \mathbb{R}$, the same
\mathbb{R}–coordinate as x. This does not depend on the choice of v, by the equivalence relation.

Step 3. The product map is a quasi-isometric embedding. Define $f : \tilde{M} \to \prod T_i$ to be $\prod f_i$. We wish to show that f is a quasi-isometric embedding. The easier inequality is $d(f(x), f(y)) \leq Kd(x, y) + C$: the maps π_v and $r(v)$ are non-expanding, so f_1 and f_2 are readily checked to be 1–Lipschitz, while f_0 satisfies $d_{T_0}(f_0(x), f_0(y)) \leq d_{\tilde{M}}(x, y)/\rho + 1$ where

$$0 < \rho = \inf\{d_{\tilde{M}}(x, x') : x \in X_v, x' \in X_{v'}, d_{T_0}(v, v') = 2\}.$$

Let us show the other inequality.

We will start with a geodesic δ in $\prod T_i$ connecting $f(x)$ to $f(y)$ and construct a path γ in \tilde{M} connecting x to y such that $l(\gamma) \leq Kl(\delta) + C$. Let δ_1, δ_2 be the projections of δ on the factors. One may wish to compare the paths we obtain in this way with the “special paths” described in [Sis11].

Suppose that $x \in X_\nu$, $y \in X_\mu$ and let v_0, \ldots, v_n be the vertices of T in the geodesic connecting v_0 to v_n. For $j = 0, \ldots, n$ let $i(j) \in \{1, 2\}$ be such that $v_j \in V_{i(j)}$ and choose $\alpha_j \subseteq \delta_{i(j)}$ so that $\alpha_j \subseteq [\nu_{v_j}(F_{v_j})]$. We will also require that the final point of α_j is the starting point of α_{j+2}, that the starting point of α_0 is $f_{i(0)}(x)$ and that the final point of α_n is $f_{i(n)}(y)$. This can be easily arranged using the fact that each $[\nu_v(F_v)]$ is convex in the corresponding T_j.

For $j = 0, \ldots, n − 1$, let t_j be the \mathbb{R}–coordinate as a point in $F_{v_j} \times \mathbb{R}$ of $(p_j, 0) \in F_{v_{j+1}} \times \mathbb{R}$, where p_j is the starting point of α_{j+1}. Also, let t_n be the \mathbb{R}–coordinate of $y \in F_{v_n} \times \mathbb{R}$.

For $j = 0, \ldots, n$ let γ_j be the path $\alpha_j \times t_j$ in X_{v_j}. Notice that the distance between the final point of γ_j and the starting point of γ_{j+1} is at most 2μ. So, we can concatenate in a suitable order the γ_j’s and n geodesics of length at most 2μ to obtain a path γ from x to y. Clearly $l(\gamma_j) = l(\alpha_j)$, so

$$l(\gamma) = \sum l(\gamma_j) + 2n\mu = l(\delta_1) + l(\delta_2) + 2n\mu = d(f_1(x), f_1(y)) + d(f_2(x), f_2(y)) + 2\mu d(f_0(x), f_0(y)) + 4\mu,$$

as $d(f_0(x), f_0(y)) \geq n − 2$ we have

$$l(\gamma) \leq d(f_1(x), f_1(y)) + d(f_2(x), f_2(y)) + 2\mu d(f_0(x), f_0(y)) + 4\mu,$$

and we are done. \qed

References

