Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the cardinality of countable dense homogeneous spaces

Authors: A. V. Arhangel’skii and J. van Mill
Journal: Proc. Amer. Math. Soc. 141 (2013), 4031-4038
MSC (2010): Primary 54A25, 54D65, 54H11
Published electronically: July 11, 2013
MathSciNet review: 3091794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a countable dense homogeneous space has size at most continuum. If moreover it is compact, then it is first-countable under the Continuum Hypothesis. We also construct under the Continuum Hypothesis an example of a hereditarily separable, hereditarily Lindelöf, countable dense homogeneous compact space of uncountable weight.

References [Enhancements On Off] (What's this?)

  • 1. A. V. Arhangel'skii and J. van Mill, Topological homogeneity, 2011, preprint, available online:$ \sim $vanmill/papers/preprints/preprints.html. To appear in Recent Progress in Topology III.
  • 2. R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194. MR 0301711 (46:866)
  • 3. C. Bessaga and A. Pełczyński, The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153-190. MR 0273347 (42:8227)
  • 4. L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Akad. Amsterdam 12 (1910), 785-794.
  • 5. G. Cantor, Beiträge zur Begrundüng der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-512.
  • 6. E. K. van Douwen, Retracts of the Sorgenfrey line, Compositio Math. 38 (1979), 155-161. MR 528838 (80i:54042)
  • 7. E. K. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167. MR 776619 (85k:54001)
  • 8. I. Farah, M. Hrušák, and C. Martínez Ranero, A countable dense homogeneous set of reals of size $ \aleph _1$, Fund. Math. 186 (2005), 71-77. MR 2163103 (2006f:54031)
  • 9. B. Fitzpatrick, Jr. and N. F. Lauer, Densely homogeneous spaces. I, Houston J. Math. 13 (1987), 19-25. MR 884229 (88d:54041)
  • 10. M. K. Fort, Jr., Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962), 879-884. MR 0145499 (26:3030)
  • 11. I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, vol. 34, Mathematical Centre, Amsterdam, 1971. MR 0340021 (49:4778)
  • 12. K. Kunen, A compact $ L$-space under CH, Topology Appl. 12 (1981), 283-287. MR 623736 (82h:54065)
  • 13. J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York, 1988. MR 918341 (89b:54003)
  • 14. W. Sierpiński, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11-16.
  • 15. J. Steprāns and H. X. Zhou, Some results on CDH spaces. I, Topology Appl. 28 (1988), 147-154. MR 932979 (89c:54070)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54A25, 54D65, 54H11

Retrieve articles in all journals with MSC (2010): 54A25, 54D65, 54H11

Additional Information

A. V. Arhangel’skii
Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701

J. van Mill
Affiliation: Department of Mathematics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081$^{a}$, 1081 HV Amsterdam, The Netherlands

Keywords: Countable dense homogeneous, cardinality, Continuum Hypothesis
Received by editor(s): December 16, 2011
Received by editor(s) in revised form: January 10, 2012
Published electronically: July 11, 2013
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society