Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fine structures inside the PreLie operad


Author: Frédéric Chapoton
Journal: Proc. Amer. Math. Soc. 141 (2013), 3723-3737
MSC (2010): Primary 05C05, 18D50; Secondary 17A30
DOI: https://doi.org/10.1090/S0002-9939-2013-11655-2
Published electronically: July 16, 2013
MathSciNet review: 3091764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article aims at a detailed analysis of the $ \operatorname {PreLie}$ operad. We obtain a concrete description (as a morphism) of the relationship between the anticyclic structure of $ \operatorname {PreLie}$ and the generators of $ \operatorname {PreLie}$ as a $ \operatorname {Lie}$-module, which was previously known only at the level of characters. Building on this, we obtain a surprising inclusion of the cyclic Lie module in the $ \operatorname {PreLie}$ operad. We conjecture that the image of this inclusion generates an interesting free sub-operad.


References [Enhancements On Off] (What's this?)

  • 1. Nantel Bergeron and Muriel Livernet, A combinatorial basis for the free Lie algebra of the labelled rooted trees, J. Lie Theory 20 (2010), no. 1, 3-15. MR 2667815 (2011e:18018)
  • 2. Nantel Bergeron and Jean-Louis Loday, The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1585-1597. MR 2763748 (2012b:17001)
  • 3. John C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons Ltd., Chichester, 2003. MR 1993957 (2004e:65069)
  • 4. Frédéric Chapoton, On some anticyclic operads, Algebr. Geom. Topol. 5 (2005), 53-69 (electronic). MR 2135545 (2006a:18008)
  • 5. -, Free pre-Lie algebras are free as Lie algebras, Bulletin canadien de mathématiques 53 (2010), no. 3, 425-437. MR 2682539 (2011g:17014)
  • 6. Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices (2001), no. 8, 395-408. MR 1827084 (2002e:17003)
  • 7. James Conant and Karen Vogtmann, On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003), 1167-1224. MR 2026331 (2004m:18006)
  • 8. Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et arbres de Cayley, Electron. J. Combin. 3 (1996), no. 2, Research Paper 17, approx. 18 pp. (electronic), The Foata Festschrift. MR 1392502 (97f:05006)
  • 9. Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 89-120. MR 1935036 (2003j:16047)
  • 10. Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. MR 0161898 (28:5102)
  • 11. E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 167-201. MR 1358617 (96m:19011)
  • 12. Eric Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math. 131 (2010), no. 1-2, 87-110. MR 2574993 (2011c:18013)
  • 13. Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel'fand Mathematical Seminars, 1990-1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173-187. MR 1247289 (94i:58212)
  • 14. Martin Markl, Cyclic operads and homology of graph complexes, Rend. Circ. Mat. Palermo (2) Suppl. (1999), no. 59, 161-170, The 18th Winter School ``Geometry and Physics'' (Srní, 1998). MR 1692267 (2000g:18009)
  • 15. Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. MR 1898414 (2003f:18011)
  • 16. Christopher R. Stover, The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. Pure Appl. Algebra 86 (1993), no. 3, 289-326. MR 1218107 (94e:16031)
  • 17. Bruno Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), no. 2, 699-725. MR 2277706 (2007m:18010)
  • 18. Ernest B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303-358. MR 0158414 (28:1637)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05C05, 18D50, 17A30

Retrieve articles in all journals with MSC (2010): 05C05, 18D50, 17A30


Additional Information

Frédéric Chapoton
Affiliation: Institut Camille Jordan, Université Claude Bernard Lyon 1, 21 Avenue Claude Bernard, 69622 Villeurbanne Cedex, France

DOI: https://doi.org/10.1090/S0002-9939-2013-11655-2
Received by editor(s): December 12, 2011
Received by editor(s) in revised form: January 17, 2012
Published electronically: July 16, 2013
Communicated by: Jim Haglund
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society