Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On harmonic non-commutative $ L^p$-operators on locally compact quantum groups


Author: Mehrdad Kalantar
Journal: Proc. Amer. Math. Soc. 141 (2013), 3969-3976
MSC (2010): Primary 46L52, 46L53, 46L65
DOI: https://doi.org/10.1090/S0002-9939-2013-11763-6
Published electronically: July 29, 2013
MathSciNet review: 3091787
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a locally compact quantum group $ \mathbb{G}$ with tracial Haar weight $ \varphi $ and a quantum measure $ \mu $ on $ \mathbb{G}$, we study the space $ {\mathcal {H}_\mu ^p(\mathbb{G})}$ of $ \mu $-harmonic operators in the non-commutative $ L^p$-space $ {\mathcal {L}^p(\mathbb{G})}$ associated to the Haar weight $ \varphi $. The main result states that if $ \mu $ is non-degenerate, then $ {\mathcal {H}_\mu ^p(\mathbb{G})}$ is trivial for all $ 1\leq p<\infty $.


References [Enhancements On Off] (What's this?)

  • [1] E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865-884. MR 2013149 (2004k:46129), https://doi.org/10.1142/S0129167X03002046
  • [2] Gustave Choquet and Jacques Deny, Sur l'équation de convolution $ \mu =\mu \ast \sigma $, C. R. Acad. Sci. Paris 250 (1960), 799-801 (French). MR 0119041 (22 #9808)
  • [3] Cho-Ho Chu, Harmonic function spaces on groups, J. London Math. Soc. (2) 70 (2004), no. 1, 182-198. MR 2064757 (2005h:43001), https://doi.org/10.1112/S0024610704005265
  • [4] T. J. Cooney, Noncommutative $ L_p$-spaces associated with locally compact quantum groups, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2010.
  • [5] Hideaki Izumi, Constructions of non-commutative $ L^p$-spaces with a complex parameter arising from modular actions, Internat. J. Math. 8 (1997), no. 8, 1029-1066. MR 1484866 (99a:46114), https://doi.org/10.1142/S0129167X97000494
  • [6] Masaki Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), no. 1, 1-57. MR 1916370 (2003j:46105), https://doi.org/10.1006/aima.2001.2053
  • [7] Masaki Izumi, Sergey Neshveyev, and Lars Tuset, Poisson boundary of the dual of $ {\rm SU}_q(n)$, Comm. Math. Phys. 262 (2006), no. 2, 505-531. MR 2200270 (2007f:58012), https://doi.org/10.1007/s00220-005-1439-x
  • [8] V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457-490. MR 704539 (85d:60024)
  • [9] M. Kalantar, M. Neufang, - Z.-J. Ruan, Poisson boundaries over locally compact quantum groups, Internat. J. Math. 24 (2013), no. 3, 21 pp., DOI 10.1142/S0129167X13500237.
  • [10] Hideki Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative $ L^{p}$-spaces, J. Funct. Anal. 56 (1984), no. 1, 29-78. MR 735704 (86a:46085), https://doi.org/10.1016/0022-1236(84)90025-9
  • [11] Johan Kustermans and Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837-934 (English, with English and French summaries). MR 1832993 (2002f:46108), https://doi.org/10.1016/S0012-9593(00)01055-7
  • [12] M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006 (2004g:46079)
  • [13] Marianne Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), no. 2, 327-360. MR 677418 (85b:46075)
  • [14] Stefaan Vaes and Nikolas Vander Vennet, Poisson boundary of the discrete quantum group $ \widehat {A_u(F)}$, Compos. Math. 146 (2010), no. 4, 1073-1095. MR 2660685 (2011m:46120), https://doi.org/10.1112/S0010437X1000477X
  • [15] Stefaan Vaes and Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35-84. MR 2355067 (2010a:46166), https://doi.org/10.1215/S0012-7094-07-14012-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L52, 46L53, 46L65

Retrieve articles in all journals with MSC (2010): 46L52, 46L53, 46L65


Additional Information

Mehrdad Kalantar
Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
Email: mkalanta@math.carleton.ca

DOI: https://doi.org/10.1090/S0002-9939-2013-11763-6
Received by editor(s): January 29, 2012
Published electronically: July 29, 2013
Communicated by: Marius Junge
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society