Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ L^p$-nuclear pseudo-differential operators on $ \mathbb{Z}$ and $ \mathbb{S}^1$


Authors: Julio Delgado and M. W. Wong
Journal: Proc. Amer. Math. Soc. 141 (2013), 3935-3942
MSC (2010): Primary 47G30; Secondary 47G10
DOI: https://doi.org/10.1090/S0002-9939-2013-11771-5
Published electronically: July 25, 2013
MathSciNet review: 3091784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions for pseudo-differential operators from $ L^{p_1}(\mathbb{Z})$ into $ L^{p_2}(\mathbb{Z})$ and from $ L^{p_1}({\mathbb{S}}^1)$ into $ L^{p_2}({\mathbb{S}}^1)$ to be nuclear are presented for $ 1\leq p_1$, $ p_2<\infty .$ In the cases when $ p_1=p_2,$ the trace formulas are given.


References [Enhancements On Off] (What's this?)

  • 1. C. Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104 (1988), 1181-1190. MR 929421 (89d:47059)
  • 2. C. Brislawn, Traceable integral kernels on countably generated measure spaces, Pacific J. Math. 150 (1991), 229-240. MR 1123441 (92k:47042)
  • 3. J. Delgado, The trace of nuclear operators on $ L^p(\mu )$ for $ \sigma $-finite Borel measures on second countable spaces, Integr. Equ. Oper. Theory 68 (2010), 61-74. MR 2677888 (2011i:47025)
  • 4. J. Delgado, A trace formula for nuclear operators on $ L^p$, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Birkhäuser, 2010, 181-193. MR 2664581 (2011e:47038)
  • 5. I. Gohberg, S. Goldberg and N. Krupnik, Traces and Determinants of Linear Operators, Birkhäuser, 2000. MR 1744872 (2001b:47035)
  • 6. A. Grothendieck, La theorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319-384. MR 0088665 (19:558d)
  • 7. A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, Memoirs Amer. Math. Soc. 16, 1955. MR 0075539 (17:763c)
  • 8. P. D. Lax, Functional Analysis, Wiley, 2002. MR 1892228 (2003a:47001)
  • 9. V. B. Lidskii, Nonself-adjoint operators with a trace, Dokl. Akad. Nauk SSR 125 (1959), 485-487; Amer. Math. Soc. Translations 47 (1961), 43-46. MR 0105023 (21:3769)
  • 10. S. Molahajloo, Pseudo-differential operators on $ \mathbb{Z}$, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Birkhäuser, 2010, 213-221. MR 2664583 (2011f:47082)
  • 11. S. Molahajloo and M. W. Wong, Pseudo-differential operators on $ {\mathbb{S}}^1$, in New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications 189, Birkhäuser, 2008, 297-306. MR 2509104 (2010g:47100)
  • 12. S. Molahajloo and M. W. Wong, Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on $ {\mathbb{S}}^1$, J. Pseudo-Differ. Oper. Appl. 1 (2010), 183-205. MR 2679899 (2011j:47143)
  • 13. C. A. Rodriguez, $ L^p$-estimates for pseudo-differential operators on $ \mathbb{Z}^n$, J. Pseudo-Differ. Oper. Appl. 2 (2011), 367-375. MR 2831664
  • 14. M. W. Wong, Discrete Fourier Analysis, Birkhäuser, 2011. MR 2809393 (2012c:42002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47G30, 47G10

Retrieve articles in all journals with MSC (2010): 47G30, 47G10


Additional Information

Julio Delgado
Affiliation: Departamento de Matemáticas, Universidad del Valle, Calle 13 100-00 Cali, Colombia
Address at time of publication: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
Email: julio.delgado@correounivalle.edu.co, j.delgado@imperial.ac.uk

M. W. Wong
Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
Email: mwwong@mathstat.yorku.ca

DOI: https://doi.org/10.1090/S0002-9939-2013-11771-5
Keywords: Pseudo-differential operators, nuclear operators, 2/3-nuclear operators, traces, Lidskii's formula, eigenvalues
Received by editor(s): October 22, 2011
Received by editor(s) in revised form: January 26, 2012
Published electronically: July 25, 2013
Communicated by: Michael Hitrik
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society