Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Classical operators on weighted Banach spaces of entire functions


Authors: María J. Beltrán, José Bonet and Carmen Fernández
Journal: Proc. Amer. Math. Soc. 141 (2013), 4293-4303
MSC (2010): Primary 47B38; Secondary 47A16, 46E15
DOI: https://doi.org/10.1090/S0002-9939-2013-11685-0
Published electronically: August 9, 2013
MathSciNet review: 3105871
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the operators of differentiation and of integration and the Hardy operator on weighted Banach spaces of entire functions. We estimate the norm of the operators, study the spectrum, and analyze when they are surjective, power bounded, hypercyclic, and (uniformly) mean ergodic.


References [Enhancements On Off] (What's this?)

  • [1] A.G. Arvanitidis, A.G. Siskakis, Cesàro operators on the Hardy spaces of the half-plane, arXiv:1006.1520v1.
  • [2] Aharon Atzmon and Bruno Brive, Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, 2006, pp. 27-39. MR 2244002 (2007j:47063), https://doi.org/10.1090/conm/404/07632
  • [3] Frédéric Bayart and Étienne Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179, Cambridge University Press, Cambridge, 2009. MR 2533318 (2010m:47001)
  • [4] Klaus D. Bierstedt, José Bonet, and Antonio Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), no. 2, 271-297. MR 1226832 (94i:46034), https://doi.org/10.1307/mmj/1029004753
  • [5] Klaus D. Bierstedt, José Bonet, and Jari Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), no. 2, 137-168. MR 1488148 (99a:46037)
  • [6] K.D. Bierstedt and W.H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70-79. MR 1195659 (94a:46027)
  • [7] Oscar Blasco and Antonio Galbis, On Taylor coefficients of entire functions integrable against exponential weights, Math. Nachr. 223 (2001), 5-21. MR 1817845 (2002f:30034), https://doi.org/10.1002/1522-2616(200103)223:1$ <$5::AID-MANA5$ >$3.3.CO;2-F
  • [8] José Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions, Math. Z. 261 (2009), no. 3, 649-657. MR 2471093 (2010b:47023)
  • [9] José Bonet and Antonio Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions, Complex Anal. Oper. Theory 7 (2013), no. 1, 33-42. MR 3010787
  • [10] José Bonet and Werner J. Ricker, Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions, Arch. Math. (Basel) 92 (2009), no. 5, 428-437. MR 2506944 (2010d:47009), https://doi.org/10.1007/s00013-009-3061-1
  • [11] Antonio Galbis, Weighted Banach spaces of entire functions, Arch. Math. (Basel) 62 (1994), no. 1, 58-64. MR 1249586 (94j:46028), https://doi.org/10.1007/BF01200439
  • [12] Karl-G. Grosse-Erdmann and Alfredo Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011. MR 2919812
  • [13] Anahit Harutyunyan and Wolfgang Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions, Studia Math. 184 (2008), no. 3, 233-247. MR 2369141 (2009j:46063), https://doi.org/10.4064/sm184-3-3
  • [14] Hans Jarchow, Locally convex spaces, B. G. Teubner, Stuttgart, 1981. Mathematische Leitfäden. [Mathematical Textbooks]. MR 632257 (83h:46008)
  • [15] Ulrich Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411 (87i:28001)
  • [16] Michael Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. MR 0417821 (54 #5869)
  • [17] Heinrich P. Lotz, Tauberian theorems for operators on $ L^{\infty }$ and similar spaces, Functional analysis: surveys and recent results, III (Paderborn, 1983), North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 117-133. MR 761376 (86h:47062), https://doi.org/10.1016/S0304-0208(08)71470-1
  • [18] Heinrich P. Lotz, Uniform convergence of operators on $ L^\infty $ and similar spaces, Math. Z. 190 (1985), no. 2, 207-220. MR 797538 (87e:47032), https://doi.org/10.1007/BF01160459
  • [19] Wolfgang Lusky, On the Fourier series of unbounded harmonic functions, J. London Math. Soc. (2) 61 (2000), no. 2, 568-580. MR 1760680 (2001c:46047), https://doi.org/10.1112/S0024610799008443
  • [20] Wolfgang Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175 (2006), no. 1, 19-45. MR 2261698 (2007f:30089), https://doi.org/10.4064/sm175-1-2
  • [21] Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073 (98g:46001)
  • [22] Alfonso Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 872-884. MR 1766111 (2001j:47026), https://doi.org/10.1112/S0024610700008875
  • [23] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062 (51 #1315)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B38, 47A16, 46E15

Retrieve articles in all journals with MSC (2010): 47B38, 47A16, 46E15


Additional Information

María J. Beltrán
Affiliation: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46071 Valencia, Spain
Address at time of publication: Facultat de Magisteri, Universitat de València, E-46022 València, Spain
Email: mabelme@upv.es, maria.jose.beltran@uv.es

José Bonet
Affiliation: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46071 Valencia, Spain
Email: jbonet@mat.upv.es

Carmen Fernández
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, E-46100 Burjassot, Spain
Email: carmen.fdez-rosell@uv.es

DOI: https://doi.org/10.1090/S0002-9939-2013-11685-0
Received by editor(s): December 5, 2011
Received by editor(s) in revised form: February 3, 2012
Published electronically: August 9, 2013
Additional Notes: The authors were partially supported by MEC and FEDER Project MTM2010-15200, by GV Project Prometeo/2008/101, by grant F.P.U. AP2008-00604, and by Conselleria d’Educació de la GVA, Project GV/2010/040.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society