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A TIGHTNESS PROPERTY OF A SYMMETRIC MARKOV

PROCESS AND THE UNIFORM LARGE DEVIATION

PRINCIPLE

MASAYOSHI TAKEDA

(Communicated by Edward C. Waymire)

Abstract. Previously, we considered a large deviation for occupation mea-
sures of a symmetric Markov processes under the condition that its resolvent
possesses a kind of tightness property. In this paper, we prove that if the
Markov process is conservative, then the tightness property implies the uni-
form hyper-exponential recurrence, which leads us to the uniform large devia-
tion principle.

1. Introduction

Let E be a locally compact separable metric space and m a positive Radon
measure on E with full support. Let X = (Ω, Xt,Px, ζ) be an m-symmetric
Borel right process on E. Here ζ is the lifetime of X. We assume that the pro-
cess X is irreducible and strong Feller. Moreover, we assume that X possesses
a tightness property ; i.e., for any ε > 0, there exists a compact set K such that
supx∈E R11Kc(x) ≤ ε. Here 1Kc is the indicator function of the complement of
K and R1 is the 1-resolvent of X. In [18], [19], we consider large deviations for
empirical measures of symmetric Markov processes with the tightness property.

We prove in this note that if X is conservative, Px(ζ = ∞) = 1, then the
tightness property implies the positive recurrence of X; in particular, the measure
m turns out to be finite. Moreover, we prove that if, in addition, there exists
an increasing sequence {Kn}∞n=1 of compact sets such that the union of {Kn}∞n=1

equals E and each part (absorbing) process XDn on Dn (Dn := Kc
n) is irreducible,

thenX possesses the following strong recurrence property: for any positive constant
γ, there exists a compact set K ⊂ E such that

sup
x∈E

Ex(exp(γσK)) < ∞,

where σK is the first hitting time of K, σK = inf{t > 0 : Xt ∈ K}. Wu [21] calls
this property a uniform hyper-exponential recurrence, and we prove that the prop-
erty implies the uniform large deviation principle (Theorem 2.3 and Theorem 3.12
below). As an example, a one-dimensional diffusion process satisfies the uniform
hyper-exponential recurrence, and thus the uniform large deviation principle, if
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both boundaries are an entrance in Feller’s classification of the boundaries (Exam-
ple 3.1). On the other hand, we see that if X is not conservative, the tightness
property implies a fast explosion in the sense that the lifetime ζ is exponentially
integrable: for some γ > 0,

sup
x∈E

Ex(exp(γζ)) < ∞.

There exist two key items in the proof of these facts: one is an inequality due
to Stollman and Voigt (see (2.6)), and the other is the identification of Donsker-
Varadhan’s I-function (see (2.5)) with the Dirichlet form (Proposition 2.4). Com-
bining these facts with the tightness property, we can show that the subset of
probability measures on E defined by {u2 ·m :

∫
E
u2dm = 1, E(u, u) ≤ l}, l > 0,

is compact with respect the weak topology, which leads us to the existence of the
ground state (Lemma 2.6). Here E is the Dirichlet form generated by X (see (2.1)).

We finally discuss sufficient conditions for a part process on an open set to be
irreducible, because this property is needed for the proof of the uniform hyper-
exponential recurrence (Remark 3.7, Lemma 3.9).

2. Existence of the ground state

Let E be a locally compact separable metric space, EΔ = E ∪{Δ} the one point
compactification of E, and m a positive Radon measure on E with full support.
Let X = (Ω,F, {Ft}t≥0, Xt,Px, ζ) be an m-symmetric Borel right process having
left limits on (0, ζ). Here ζ is the lifetime ζ(ω) = inf{s ≥ 0 : Xs(w) = Δ} and
{Ft}t≥0 is the minimal (augmented) admissible filtration.

Let {pt}t≥0 be the semigroup of X, ptf(x) = Ex(f(Xt)). By Lemma 1.4.3 in [7],
{pt}t≥0 uniquely determines a strongly continuous Markovian semigroup {Tt}t≥0

on L2(E;m). We define the Dirichlet form (E ,D(E)) on L2(E;m) generated by X:

(2.1)

⎧⎪⎪⎨⎪⎪⎩
D(E) =

{
u ∈ L2(E;m) : lim

t→0

1

t
(u− Ttu, u)m < ∞

}
,

E(u, v) = lim
t→0

1

t
(u− Ttu, v)m.

We know that the Dirichlet form (E ,D(E)) is quasi-regular ([12]).
A set B ⊂ EΔ is said to be nearly Borel if for any probability measure μ on EΔ

there exist Borel sets B1, B2 of EΔ such that B1 ⊂ B ⊂ B2 and

Pμ(Xt ∈ B2 \B1, ∃t ≥ 0) = 0.

A set N ⊂ E is said to be m-polar if there exists a nearly Borel set Ñ ⊂ E such

that N ⊂ Ñ and Pm(σ
˜N < ∞) = 0. A statement depending on x ∈ A is said to

hold q.e. on A if there exists an m-polar set N ⊂ A such that the statement is true
for every x ∈ A \N (“q.e.” is an abbreviation of “quasi-everywhere”).

Let us denote by {Rα}α>0 the resolvent of X,

Rαf(x) = Ex

(∫ ∞

0

e−αtf(Xt)dt

)
, f ∈ Bb(E),

where Bb(E) is the space of bounded Borel functions on E. We now introduce three
properties of Borel right processes:

I. (Irreducibility) If a Borel set A is pt-invariant, i.e.,
∫
A
pt1Acdm = 0 for any

t > 0, then A satisfies either m(A) = 0 or m(Ac) = 0. Here 1Ac is the indicator
function of the complement of A.
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II. (Strong Feller Property) pt(Bb(E)) ⊂ Cb(E), t > 0, where Cb(E) is the
space of bounded continuous functions.

III. (Tightness Property) For any ε > 0, there exists a compact set K such
that supx∈E R11Kc(x) ≤ ε.

Here we make remarks on the tightness property.

Remark 2.1. (i) If the measure m is finite, m(E) < ∞, and ‖R1‖1,∞ < ∞, then
‖R11Kc‖∞ ≤ ‖R1‖1,∞m(Kc) and property III is fulfilled. Here ‖R1‖1,∞ is the
operator norm from L1(E;m) to L∞(E;m).

(ii) If R11 ∈ C∞(E), then X is explosive and has property III. In fact, we have

sup
x∈E

R11Kc(x) = sup
x∈Kc

R11Kc(x) ≤ sup
x∈Kc

R11(x).

Here C∞(E) is the set of continuous functions vanishing at infinity. If X is a
diffusion process generated by a locally elliptic operator, the property that R11 ∈
C∞(E) implies the compactness of R1 as an operator on L∞(E;m), as a result, on
L2(E;m) ([5, Theorem 6.1]).

(iii) If C∞(E) is invariant under R1, R1(C∞(E)) ⊂ C∞(E), then R11 ∈ C∞(E)
is equivalent to property III. In fact, for a compact set K, take a positive function
g ∈ C∞(E) such that 1K ≤ g. We then see from the invariance of C∞(E) that
0 ≤ limx→∞ R11K(x) ≤ limx→∞ R1g(x) = 0. Hence for any ε > 0 there exists a
compact set K such that

lim sup
x→∞

R11(x) ≤ lim sup
x→∞

R11K(x) + lim sup
x→∞

R11Kc(x) ≤ sup
x∈E

R11Kc(x) ≤ ε,

which implies R11 ∈ C∞(E). Hence, if C∞(E) is invariant under R1 and X is
conservative, pt1 = 1, then X does not have the tightness property; in particular,
the Ornstein-Uhlenbeck process does not.

(iv) If the Markov process X is conservative, then property III implies that X
is positive recurrent (Lemma 3.2).

It follows from property II that the transitions probability pt(x, dy) is absolutely
continuous with respect to m:

(2.2) pt(x, dy) = pt(x, y)m(dy) for each t > 0, x ∈ E.

As a result, the resolvent kernel is also absolutely continuous with respect to m:
Rβ(x, dy) = Rβ(x, y)m(dy). By [7, Lemma 4.2.4] the density Rβ(x, y) is assumed to
be a non-negative Borel function such that Rβ(x, y) is symmetric and β-excessive in
x and in y. Under the absolute continuity condition, “quasi-everywhere” statements
are strengthened to “everywhere” ones.

A positive measure μ is said to be smooth if there exists a positive continuous
additive functional A of X such that for any positive Borel function f and γ-
excessive function h (γ ≥ 0), that is, e−γtpth ≤ h,

(2.3) lim
t→0

1

t
Eh·m

[∫ t

0

f(Xs)dAs

]
=

∫
X

f(x)h(x)μ(dx).

Here, Eh·m[ · ] =
∫
X
Ex[ · ]h(x)m(dx).

Following Z.-Q. Chen [1], we introduce classes of potentials.
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Definition 2.1. A positive smooth measure μ is said to be in the class K∞ if for
any ε > 0 there exist a compact subset K and a positive constant δ > 0 such that
for all measurable sets B ⊂ K with μ(B) < δ,

sup
x∈E

∫
Kc∪B

R1(x, y)μ(dy) ≤ ε.

Under the condition for X being transient, the class K∞ is usually defined by
using the Green kernel, i.e., the 0-resolvent density, and a measure μ in the class is
said to be Green-tight . Here we use the 1-resolvent density to deal with recurrent
processes. The next lemma is proven by Z.-Q. Chen ([1, Theorem 4.2]). We give a
proof for completion.

Lemma 2.2. If X satisfies II and III, then the measure m belongs to K∞.

Proof. By the definition of property III, there exists a compact set K such that
supx∈E

∫
Kc R1(x, y)μ(dy) ≤ ε/2. Suppose that for any δ > 0 there exists a Borel

set B ⊂ K with m(B) ≤ δ such that supx∈E R11B(x) > ε/2. Then there ex-
ists a sequence {Bn}∞n=1 of Borel subsets of K such that m(Bn) ≤ 1/2n and
supx∈K R11Bn

(x) > ε/2. Define An =
⋃∞

k=nBk. Then m(An) is less than 1/2n−1

and decreasingly converges to zero as n → ∞. Hence R11An
decreasingly con-

verges to zero point-wise. Since R11An
is continuous by the property II, R11An

uniformly converges to zero on K. This is contradictory to supx∈K R11An
(x) ≥

supx∈K R11Bn
(x) > ε/2. �

We denote by P the set of probability measures on E. Define the function IE on
P of probability measures on E by

(2.4) IE(ν) =

{
E(

√
f,

√
f) if ν = f ·m,

√
f ∈ D(E),

∞ otherwise.

The space P is supposed to be equipped with the weak topology. Given ω ∈ Ω with
0 < t < ζ(ω), let Lt(ω) ∈ P be the normalized occupation distribution: for a Borel
set A of E,

Lt(ω)(A) =
1

t

∫ t

0

1A(Xs(ω))ds.

We proved the next theorem in [18].

Theorem 2.3. Assume that X satisfies I–III.

(i) For each open set G ⊂ P,

lim inf
t→∞

1

t
logPx (Lt ∈ G, t < ζ) ≥ − inf

ν∈G
IE(ν).

(ii) For each closed set K ⊂ P,

lim sup
t→∞

1

t
log sup

x∈E
Px (Lt ∈ K, t < ζ) ≤ − inf

ν∈K
IE(ν).

We define the function space D+ by

D+ =
{
Rαf : α > 0, f ∈ L2(E;m) ∩ C+

b (E) and f 
≡ 0
}
,

where C+
b (E) denotes the set of non-negative bounded continuous functions. We

see that any function in D+(A) is strictly positive by the irreducibility I. Define the
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operator A on D+ by ARαf = αRαf − f and the function I on P by

(2.5) I(ν) = − inf
u∈D+

ε>0

∫
E

Au

u+ ε
dν.

The function I is a version of the Donsker-Varadhan I-function introduced in [6].
Note that since the Markov process X is allowed to have a finite lifetime, the func-
tion u = Rαf ∈ D+ is not alway uniformly lower-bounded by a positive constant
even if f is so, and consequently the function Au/u is not always bounded. By
adding a positive constant ε, the function Au/(u+ ε) is bounded continuous, and
consequently the I-function defined by (2.5) is lower semicontinuous on P with re-
spect to the weak topology. This is a reason why we modify the Donsker-Varadhan
I-function. In spite of this modification, we can identify the I-function with the
Dirichlet form ([7, Theorem 6.4.2]):

Proposition 2.4.
I(ν) = IE(ν), ν ∈ P.

We define the subset PM of P by

PM =

{
u2 ·m : u ∈ D(E),

∫
E

u2dm = 1, E(u, u) ≤ M

}
, M > 0.

Lemma 2.5. The set PM is compact in P.

Proof. Recall the inequality in [14]: for any β > 0 and any smooth measure μ,

(2.6)

∫
E

u2(x)μ(dx) ≤ ‖Rβμ‖∞ ·
(
E(u, u) + β

∫
E

u2dm

)
, u ∈ D(E).

Combining property III with this inequality, we see that PM is tight. Indeed, for
any compact set K ⊂ E and any u2 ·m ∈ PM ,

(2.7)

∫
Kc

u2dm ≤ ‖R11Kc‖∞ ·
(
E(u, u) +

∫
E

u2dm

)
≤ (M + 1)‖R11Kc‖∞.

Since PM = {ν ∈ P : I(ν) ≤ M} is closed by the lower semicontinuity of I, we
have the lemma. �

Let λ2 be the bottom of the spectrum:

(2.8) λ2 = inf

{
E(f, f) : f ∈ D(E),

∫
E

f2dm = 1

}
.

A function φ0 on E is called a ground state of the L2-generator for E if φ0 ∈
D(E), ‖φ0‖2 = 1 and E(φ0, φ0) = λ2.

Lemma 2.6 ([19]). Assume that X satisfies I–III. Then there exists a ground state
φ0 uniquely up to a sign. φ0 can be taken to be strictly positive on E.

Proof. Let {un}∞n=1 ⊂ D(E) be a minimizing sequence, ‖un‖2 = 1, and λ2 =
limn→∞ E(un, un). We see from Lemma 2.5 that there exists a subsequence {u2

nk
·

m}∞k=1 such that u2
nk

·m converges weakly to a probability measure ν = φ2
0 ·m, φ0 ∈

D(E), φ0 ≥ 0. Since the function IE is lower semicontinuous by Proposition 2.4,
IE(φ

2m) ≤ λ2. Hence the function φ0 is just a ground state.
It follows from the inequality ‖φ0+εg‖2E ≥ λ2‖φ0+εg‖22 holding for any g ∈ D(E)

and for any ε > 0 that E(φ0, g) = λ2(φ0, g). Hence αRα−λ2
φ0 = φ0, α > λ2, which

implies that φ0 is strictly positive by irreducibility.
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To prove the uniqueness of the ground state, we introduce a closed symmetric
form (Eφ0 ,D(Eφ0)) on L2(E;φ2

0m) by

(2.9)

{
Eφ0(u, v) = E(uφ0, vφ0)− λ2(uφ0, vφ0),
D(Eφ0) = {u ∈ L2(E;φ2

0 ·m) : uφ0 ∈ D(E)}.
Since 1 ∈ D(Eφ0), Eφ0(1, 1) = 0 and the associated resolvent Rφ0

α satisfies Rφ0
α f =

φ−1
0 Rα−λ2

(fφ0), α > λ2, we see from the strict positivity of φ0 that (Eφ0 ,D(Eφ0))
is an irreducible recurrent Dirichlet form so that f is constant whenever f ∈
D(Eφ0), Eφ0(f, f) = 0. Let ψ0 be another ground state. Then ψ0 = fφ0 with
f = ψ0/φ0 ∈ D(Eφ0), Eφ0(f, f) = E(ψ0, ψ0) − λ2 = 0, which yields that f is
constant and ψ0 = ±φ0. �

Let {un}∞n=1 ⊂ D(E) be a minimizing sequence in the proof of Lemma 2.6. We
would like to emphasize that the tightness of {u2

n · m}∞n=1 ⊂ P and the lower
semicontinuity of the function IE with respect to the weak topology are used for
the proof of the existence of the ground state, while the E1-weak compactness of
{un}∞n=1 in D(E) and the E1-weakly lower semicontinuity of E are usually used (e.g.
[11, Section 11.1]). If X is a Brownian motion on a Riemannian manifold or a
symmetric α-stable process, then we can show by employing the Rellich theorem
that for μ ∈ K∞ the embedding of (D(E), E1) to L2(E;μ) is compact ([16, Propo-
sition 2], [17, Theorem 2.7]). Hence due to Lemma 2.2 and Proposition 2.4 we see
that the resolvent Rα, α > 0, is a compact operator on L2(E;m) and the level set
{ν ∈ P : IE(ν) ≤ �} is a compact subset of P. See [19] for another application of
the existence of ground states.

3. Tightness property

In this section, we will show that the tightness property implies a strong recur-
rence if X is conservative and a fast explosion if X is not conservative.

Lemma 3.1. An irreducible Borel right process X with (2.2) satisfies one of the
next two properties:

(a) (Conservative) Px(ζ < ∞) = 0 for all x ∈ E.
(b) (Explosive) Px(ζ < ∞) > 0 for all x ∈ E.

Proof. Suppose O := {x ∈ E : Px(ζ < ∞) > 0} is not empty. Since g(x) := Px(ζ <
∞) is an excessive function, the set O is a finely open set (e.g. [7, Theorem A.2.7])
and not m-polar. Indeed, if O is m-polar, then O is polar by the absolute continuity
of the transition probability (2.2), and so Px(σO < ∞) = 0 for all x ∈ E, which
is contradictory to the fact that Px(σO < ∞) > 0 for x ∈ O. (Note that [7,
Theorem 4.1.2] holds for Borel right processes.) Since O =

⋃∞
n=1 Fn, Fn = {x ∈

E : Px(ζ < ∞) ≥ 1/n}, some Fn are not m-polar. Due to (2.2), we see from
[7, Exercise 4.7.1] that Px(σFn

< ∞) > 0 for all x ∈ E. Note that the set Fn is
finely closed and thus XσFn

∈ Fn on {σFn
< ∞}. We then have

Px(ζ < ∞) = Px(ζ < ∞, σFn
< ∞) + Px(ζ < ∞, σFn

= ∞)

≥ Px(ζ(θσFn
) < ∞, σFn

< ∞)

= Ex(PXσFn
(ζ < ∞);σFn

< ∞)

≥ 1

n
Px(σFn

< ∞) > 0.

�
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3.1. Conservative case.

Lemma 3.2. Assume X satisfies I–III. If X is, in addition, conservative, then it
is positively recurrent.

Proof. If X is conservative, then the tightness property (III) implies that for any
ε > 0, there exists a compact set K such that infx∈E R11K(x) ≥ 1 − ε. Since the
function R11K is in L1(E;m), m is finite, and thus 1 ∈ D(E), E(1, 1) = 0. Hence
X is positive recurrent ([7, Theorem 1.6.3]). �
Remark 3.1. Suppose that X is conservative and its semigroup satisfies the invari-
ance of C∞(E), pt(C∞(E)) ⊂ C∞(E). Since

lim
x→∞

R11Kc(x) = 1− lim
x→∞

R11K(x) = 1− 0 = 1,

X does not have the tightness property.

Lemma 3.3. Assume X satisfies (2.2). Then

sup
x∈X

pt1(x) = ess sup
x∈X

pt1(x).

Proof. Let M = supx∈X pt1(x), M̃ = ess supx∈X pt1(x). Suppose M > M̃ and

take r so that M > r > M̃ . Since the function pt1 is excessive, the set O = {x ∈
X : pt1(x) > r} is finely open and m(O) = 0 by the definition of M̃ . Hence by
Lemma 4.1.4 and Theorem 4.1.2 in [7], the set O is polar and thus empty by the
argument in the proof of Lemma 3.1. Therefore pt1(x) ≤ r, which is contradictory
to M > r. �

Let us denote by ‖pt‖p,p the operator norm of pt from Lp(X;m) to Lp(X;m)
and put

−λp = lim
t→∞

1

t
log ‖pt‖p,p, 1 ≤ p ≤ ∞.

−λp is the long time exponential growth bound of the semigroup {pt}t≥0. The next
theorem gives us a probabilistic interpretation of λ∞ (cf. [13]).

Theorem 3.4. Assume X satisfies (2.2). Then

λ∞ = sup

{
λ ≥ 0 : sup

x∈E
Ex(e

λζ) < ∞
}
.

Proof. Let γ be the right hand side of (3.4). Since for λ < γ,

‖pt‖∞,∞ = sup
x∈E

Px(t < ζ) ≤ e−λt sup
x∈E

Ex(e
λζ),

γ ≤ λ∞. In particular, if λ∞ = 0, then γ = 0.
For 0 < λ < λ∞, let pλt = eλtpt. Then since

lim
t→∞

1

t
log ‖pλt ‖∞,∞ = λ− λ∞ < 0,∫ ∞

0

‖pλt ‖∞,∞dt =

∫ ∞

0

sup
x∈E

Ex

(
eλt; t < ζ

)
dt < ∞.

Hence

(3.1) sup
x∈E

∫ ∞

0

Ex

(
eλt; t < ζ

)
dt = sup

x∈E

(
Ex

(
eλζ

)
− 1

λ

)
< ∞,

and so γ ≥ λ∞. �
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Let us extend the resolvent operator; for λ ≥ 0,

R−λf(x) = Ex

(∫ ∞

0

eλtf(Xt)dt

)
.

We then see from (3.1) that for λ > 0,

(3.2) ‖R−λ‖∞,∞ < ∞ ⇐⇒ sup
x∈E

Ex(e
λζ) < ∞.

It holds that if λ∞ > 0, then supx∈E Ex(e
λ∞ζ) = ∞. Indeed, we see from (3.2)

that if supx∈E Ex(e
λ∞ζ) < ∞, then ‖R−λ∞‖∞,∞ < ∞. Noting that

R−λ∞−ε = R−λ∞ + εR2
−λ∞ + ε2R3

−λ∞ + · · ·
([10, III, §6]), we see that if 0 < ε < 1/‖R−λ∞‖∞,∞, then ‖R−λ∞−ε‖∞,∞ < ∞.

Using (3.2) again, we have supx∈E Ex(e
(λ∞+ε)ζ) < ∞, which is contradictory to

Theorem 3.4. Therefore, we have the next corollary.

Corollary 3.5. Suppose λ∞ > 0. Then

sup
x∈E

Ex (exp(λζ)) < ∞ ⇐⇒ λ < λ∞.

Z.-Q. Chen [1, Theorem 4.1] proved:

Theorem 3.6. Suppose X is irreducible and satisfies (2.2). If the measure m
belongs to K∞, then λp is independent of p.

Remark 3.7. The strong Feller property is not assumed in Theorem 3.6, while the
Lp-independence is proven in [7, Theorem 6.4.3] under the assumptions (I)–(III).
This extension is crucial when we show the Lp-independence for part processes of
X. For a further extension of Theorem 3.6, see the recent papers [2], [3] of Z.-Q.
Chen.

Combining Theorem 3.6 with Corollary 3.5, we have

Corollary 3.8. Suppose X is irreducible and satisfies (2.2). If m ∈ K∞ and
λ2 > 0, then

sup
x∈E

Ex (exp(λζ)) < ∞ ⇐⇒ λ < λ2.

Let K ⊂ E be a compact set and D := Kc, the complement of K. Let XD be
the part process on D:

XD =

{
Xt, t < τD,
Δ, t ≥ τD, τD = inf{t ≥ 0 : Xt 
∈ D}.

Define the (quasi-regular) Dirichlet form (ED,D(ED)) on L2(D;m) by

(3.3)

{
ED = E ,
D(ED) = {u ∈ D(E) : u = 0 q.e. on K}.

Then (ED,D(ED)) is the Dirichlet space generated by XD ([7, Theorem 4.4.3]).
Let λD be the principal eigenvalue of the spectrum of (ED,D(ED)):

(3.4) λD = inf

{
E(u, u) : u ∈ D(ED),

∫
D

u2dm = 1

}
.

Lemma 3.9. Suppose that X satisfies I–III and is conservative. For any compact
set K with non-empty interior Ko, the principal eigenvalue λD, D = Kc, is positive.
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Proof. Let {φn}∞n=1 ⊂ D(ED)∩C0(D) be an approximating sequence in (3.4) such
that E(φn, φn) → λD. Let {φ2

nk
· m}∞k=1 be a subsequence of {φ2

n · m}∞n=1 weakly

converging to φ2
0 ·m, φ0 ∈ D(E). Then

1 = lim sup
k→∞

∫
E\Ko

φ2
nk
dm ≤

∫
E\Ko

φ2
0dm,

and thus φ0 equals 0, m-a.e. on Ko. In particular, the function φ0 is not constant
on E, because m(Ko) > 0 by the assumption on m. Hence we have E(φ0, φ0) > 0.
In fact, if E(φ0, φ0) = 0, then φ0 must be a constant by the irreducible recurrence
of (E ,D(E)) ([9, Theorem 1.3]). We now conclude that

λD = lim inf
k→∞

E(φnk
, φnk

) ≥ E(φ0, φ0) > 0.

�

We write K∞(R1) for K∞ to express the dependence of the 1-resolvent. Let
RD

1 be the 1-resolvent of XD. Denote by mD the restriction of m to D, mD(•) =
m(D ∩ •).

Lemma 3.10. Let K be a compact set. Then mD ∈ K∞(RD
1 ), D = Kc.

Proof. Let K̃ and δ be a compact set and a positive constant in Definition 2.1. We

can suppose that the interior of K̃ contains K. Let G be a relatively compact open

set such that K ⊂ G ⊂ Ḡ ⊂ K̃ and m(G \ K) < δ. Then K̃ ∩ Gc is a compact
subset of D and

RD
1 1( ˜K∩Gc)c = RD

1 1
˜Kc∪(G\K) ≤ R11 ˜Kc +R11G\K ≤ ε.

Moreover, RD
1 1B ≤ R11B for any Borel set B ⊂ K̃ ∩Gc. �

It follows from (2.7) that∫
D

u2dm =

∫
E

u21Ddm ≤ ‖R11D‖∞ ·
(
E(u, u) +

∫
E

u2dm

)
, u ∈ D(ED),

and thus

(3.5) 1 ≤ ‖R11D‖∞ · (λD + 1).

The tightness property implies that there exists a sequence {Kn}∞n=1 of compact
sets such that

⋃∞
n=1 Kn = E and ‖R11Kc

n
‖∞ → 0 as n → ∞. Hence we see from

(3.5) that for Dn = Kc
n,

(3.6) λDn ↑ ∞ as n → ∞.

Note that if X is conservative, then the lifetime of XD equals the hitting time of
K. Combining Lemma 3.10 with Corollary 3.8, we know that if XDn is irreducible,
then

(3.7) sup
x∈Dn

Ex(exp(γσKn
)) < ∞ ⇐⇒ γ < λDn .

Note that

(3.8) sup
x∈D

Ex(exp(σK)) = sup
x∈E

Ex(exp(σK)).
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Indeed, let x0 ∈ K \Kr, where Kr is the regular set of K, Px(σK = 0) = 1. Then
since

Ex0
(exp(σK)) =Ex0

(exp(σK);Xt ∈ K) + Ex0
(exp(σK);Xt ∈ D)

≤et Px0
(Xt ∈ K) + et Ex0

(exp(t+ σK(θt));Xt ∈ D)

≤et Px0
(Xt ∈ K) + et Ex0

(EXt
(exp(σK));Xt ∈ D)

≤et Px0
(Xt ∈ K) + et sup

x∈D
Ex(exp(σK))

and

Px0
(Xt ∈ K) ≤ Px0

(σK ≤ t) −→ 0 as t ↓ 0,

we have (3.8) and thus

(3.9) sup
x∈E

Ex(exp(γσKn
)) < ∞ ⇐⇒ γ < λDn .

Hence we have from (3.6) and (3.9) the following:

Lemma 3.11. Suppose that X satisfies I–III and is conservative. If there exists an
increasing sequence {Kn}∞n=1 of compact sets such that

⋃∞
n=1 Kn = E and XDn ,

Dn = Kc
n, are irreducible, then X has the following property:

(H)
For any γ > 0 there exists a compact set K such that
sup
x∈E

Ex(exp(γσK)) < ∞.

Property (H) is said to be a uniform hyper-exponential recurrence ([21]). We will
give sufficient conditions for the part process XD being irreducible (Lemma 4.2,
Lemma 4.3).

Noting that

pt(x, U) = 0 for ∀t > 0 ⇐⇒ Px(σU < ∞) = 0,

we see that ifX is irreducible, the semigroup {pt}t≥0 is topological transitive; that is,
for all non-empty open sets U and x ∈ E, there exists t > 0 such that pt(x, U) > 0.
Therefore, Theorem 1.2 in Wu [21] leads us to:

Theorem 3.12. Suppose X satisfies I–III and is conservative. If there exists an
increasing sequence {Kn}∞n=1 of compact sets such that

⋃∞
n=1 Kn = E and XDn ,

Dn = Kc
n, are irreducible, then the uniform large deviation principle holds: for each

open set G of P,

lim inf
t→∞

1

t
log inf

x∈E
Px(Lt ∈ G) ≥ − inf

μ∈G
IE(μ).

Example 3.1 (One-dimensional diffusion processes). Let us consider a one-dimen-
sional diffusion process X = (Xt,Px, ζ) on an open interval I = (r1, r2) such that
Px(Xζ− = r1 or r2, ζ < ∞) = Px(ζ < ∞), x ∈ I, and Pa(σb < ∞) > 0 for any
a, b ∈ I. The diffusion X is symmetric with respect to its canonical measure m and
satisfies I and II. The boundary point ri of I is classified into four classes: regular
boundary, exit boundary, entrance boundary, and natural boundary ([8, Chapter 5]):

(a) If r2 is a regular or exit boundary, then limx→r2 R11(x) = 0.
(b) If r2 is an entrance boundary, then limr→r2 supx∈(r1,r2) R11(r,r2)(x) = 0.

(c) If r2 is a natural boundary, then limx→r2 R11(r,r2)(x) = 1 and thus
supx∈(r1,r2) R11(r,r2)(x) = 1.
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Therefore, tightness property III is fulfilled if and only if no natural boundaries are
present. As a corollary of equation (3.6), if r2 is an entrance boundary, for any
λ > 0 there exists r1 < r < r2 such that

sup
x>r

Ex(exp(λσr)) < ∞,

where σr is the first hitting time of {r}. Therefore, if both the boundaries are
entrance, then the uniform large deviation holds. Let pt(x, y) be the transition
probability density of X. We see from [15] that if X is uniformly ergodic, that is,
there exists a positive constant M such that

p1(x, z) ≤ M · p1(y, z) for any x, y, z ∈ I,

then it satisfies the uniform large deviation principle. Nevertheless, we do not know
that a one-dimensional diffusion process with entrance boundaries always satisfies
the uniform ergodicity.

We see from [8] that the Ornstein-Uhlenbeck process on the one-dimensional
space R has natural boundaries and its semigroup keeps C∞(R) invariant. Hence
due to Remark 3.1, we see that the Ornstein-Uhlenbeck process does not possess
the tightness property. Moreover, it is known in [21] that the Ornstein-Uhlenbeck
process does not satisfy the uniform large deviation, while it satisfies the locally
uniform large deviation.

4. Irreducibility of part processes

In this section, we consider conditions for part processes being irreducible. If
X is a diffusion process generated by a locally uniform elliptic operator, then its
part process on a domain is irreducible ([7, Corollary 4.6.4, Example 4.6.1]). More
generally, we have:

Lemma 4.1. Assume R11 ∈ C∞(E). If D ⊂ E is a connected open set, then XD

satisfies I–III.

Proof. By the assumption, X is a doubly Feller process; that is, it satisfies the
strong Feller property and the invariance of C∞(E). We then know from Chung
[4] that XD has the strong Feller property. Hence Exercise 4.6.3 in [7] leads us to
this lemma. �

We next treat jump processes. Let (N(x, dy), Ht) be a Lévy system of X. We
make the next assumption:

(J)

{
(i) If m(B) > 0, then N(x,B) > 0 for any x ∈ E.
(ii) {x ∈ E : Px(inf{t > 0 : Ht > 0} = 0) = 1} = E.

Lemma 4.2. Assume (J). Then for any compact set F ⊂ D with m(F ) > 0,
Px(σF < τD) > 0.

Proof. Let x 
∈ D \ F and take r > 0 such that B(x, r) ∩ F = ∅. Then

Ex

( ∑
0<s<τD

1B(x,r)(Xs−)1F (Xs)

)
= Ex

(∫ τD

0

1B(x,r)(Xs)N(Xs, F )dHs

)
.

The right hand side is positive by the assumption, which leads us to the lemma. �
Lemma 4.3. Assume (J). Let K ⊂ D be a set with m(K) > 0. Then RD

1 (x,K) > 0
for any x ∈ D.
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Proof. Since ∫
D

RD
1 (x,K)dm =

∫
D

RD
1 1(x)1K(x)dm > 0,

the set {x ∈ D : RD
1 (x,K) > 0} is of positive m-measure. Take a compact set F

such that F ⊂ {x ∈ D : RD
1 (x,K) > 0} and m(F ) > 0. Then

RD
1 (x,K) = Ex

(∫ τD

0

e−t1K(Xt)dt

)
≥ Ex

(∫ τD

σF

e−t1K(Xt)dt;σF < τD

)
= Ex

(
e−σFRD

1 (XσF
,K);σF < τD

)
.

The right hand side is positive by Lemma 4.2. �

4.1. Explosive case. If X is explosive, then the principal eigenvalue λ is positive.
Indeed, if the ground state φ0 satisfies E(φ0, φ0) = 0, then φ0 = 0 by transience. It
follows from Corollary 3.8 that

sup
x∈E

Ex(exp(γζ)) < ∞ ⇐⇒ γ < λ2.

In particular, property (b) in Lemma 3.1 can be strengthened to Px(ζ < ∞) = 1.
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