Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invertible weighted shift operators which are $ m$-isometries


Authors: Muneo Chō, Schôichi Ôta and Kôtarô Tanahashi
Journal: Proc. Amer. Math. Soc. 141 (2013), 4241-4247
MSC (2010): Primary 47B37
DOI: https://doi.org/10.1090/S0002-9939-2013-11701-6
Published electronically: August 5, 2013
MathSciNet review: 3105867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a bounded linear operator $ T$ on a complex Hilbert space $ {\mathcal H}$, let $ \Delta _{T,m} = \sum _{k=0}^m (-1)^k \ \begin {pmatrix}m \\ k \end{pmatrix} \, T^{*m-k}T^{m-k} \ \ $$ \mbox {for} \ m \in {\mathbb{N}}$. $ T$ is called an $ m$-isometry if $ \Delta _{T,m}=0$. In this paper, for every even number $ m$, we give an example of invertible $ (m+1)$-isometry which is not an $ m$-isometry. Next we show that if $ T$ is an $ m$-isometry, then the operator $ \Delta _{T, m-1}$ is not invertible.


References [Enhancements On Off] (What's this?)

  • 1. J. Agler and M. Stankus, $ m$-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Theory, 21 (1995), 387-429. MR 1321694 (96j:47008a)
  • 2. J. Agler and M. Stankus, $ m$-Isometric transformations of Hilbert space II, Integr. Equat. Oper. Theory, 23 (1995), 1-48. MR 1346617 (96j:47008b)
  • 3. J. Agler and M. Stankus, $ m$-Isometric transformations of Hilbert space III, Integr. Equat. Oper. Theory, 24 (1996), 379-421. MR 1382018 (96j:47008c)
  • 4. A. Athavale, Some operator theoretic calculus for positive definite kernels, Proc. Amer. Math. Soc., 112(3) (1991), 701-708. MR 1068114 (92j:47050)
  • 5. J.V. Baxley, Some general conditions implying Weyl's theorem, Rev. Roum. Math. Pures Appl., 16 (1971), 1163-1166. MR 0305107 (46:4237)
  • 6. S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111-114. MR 0133690 (24:A3516)
  • 7. T. Bermudez, A. Martinon and E. Negrin, Weighted shift operators which are $ m$-isometry, Integr. Equ. Oper. Theory, 68 (2010), 301-312. MR 2735438 (2012a:47074)
  • 8. M. Chō, S. Ôta, K. Tanahashi, and A. Uchiyama, Spectral properties of $ m$-isometric operators, Funct. Anal. Approx. Comput., 4:2 (2012), 33-39.
  • 9. J.B. Conway, The Theory of Subnormal Operators, Math. Surveys and Monographs 36, Amer. Math. Soc., 1991. MR 1112128 (92h:47026)
  • 10. S.M. Patel, $ 2$-Isometric operators, Glasnik Mat., 37 (2002), 143-147. MR 1918101 (2003f:47003)
  • 11. A. Uchiyama and K. Tanahashi, Bishop's property $ (\beta )$ for paranormal operators, Operators and Matrices, 3 (2009), 517-524. MR 2597677 (2011b:47047)
  • 12. D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Boston, 1983. MR 806959 (87j:47036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B37

Retrieve articles in all journals with MSC (2010): 47B37


Additional Information

Muneo Chō
Affiliation: Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
Email: chiyom01@kanagawa-u.ac.jp

Schôichi Ôta
Affiliation: Department of Content and Creative Design, Kyushu University, Fukuoka 815-8540, Japan
Email: ota@design.kyushu-u.ac.jp

Kôtarô Tanahashi
Affiliation: Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
Email: tanahasi@tohoku-pharm.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2013-11701-6
Keywords: Hilbert space, $m$-isometry, bilateral weighted shift
Received by editor(s): October 2, 2011
Received by editor(s) in revised form: January 31, 2012
Published electronically: August 5, 2013
Additional Notes: The first author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540192
The second author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540178
The third author’s research was partially supported by Grant-in-Aid for Scientific Research, No. 20540184
Communicated by: Richard Rochberg
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society