Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Sheaves on $ \mathbb{P}^1\times\mathbb{P}^1$, bigraded resolutions, and coadjoint orbits of loop groups


Authors: Roger Bielawski and Lorenz Schwachhöfer
Journal: Proc. Amer. Math. Soc. 141 (2013), 4155-4167
MSC (2010): Primary 14F05, 14H40, 14H70, 22E67, 37K10
DOI: https://doi.org/10.1090/S0002-9939-2013-11706-5
Published electronically: August 20, 2013
MathSciNet review: 3105858
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a canonical linear resolution of acyclic $ 1$-dimensional sheaves on $ \mathbb{P}^1\times \mathbb{P}^1$ and discuss the resulting natural Poisson structure.


References [Enhancements On Off] (What's this?)

  • [1] M. R. Adams, J. Harnad, and J. Hurtubise, Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows, Comm. Math. Phys. 134 (1990), no. 3, 555-585. MR 1086744 (92a:58055)
  • [2] M. R. Adams, J. Harnad, and J. Hurtubise, Darboux coordinates and Liouville-Arnol'd integration in loop algebras, Comm. Math. Phys. 155 (1993), no. 2, 385-413. MR 1230033 (94j:58071)
  • [3] M. R. Adams, J. Harnad, and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990), no. 4, 299-308. MR 1077962 (92a:58056), https://doi.org/10.1007/BF00626526
  • [4] M. R. Adams, J. Harnad, and J. Hurtubise, Coadjoint orbits, spectral curves and Darboux coordinates, The geometry of Hamiltonian systems (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 22, Springer, New York, 1991, pp. 9-21. MR 1123273 (92k:58095), https://doi.org/10.1007/978-1-4613-9725-0_2
  • [5] M. R. Adams, J. Harnad, and E. Previato, Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras, Comm. Math. Phys. 117 (1988), no. 3, 451-500. MR 953833 (89k:58112)
  • [6] Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479 (2002b:14060), https://doi.org/10.1307/mmj/1030132707
  • [7] R. Bielawski and L. Schwachhöfer, `Pluricomplex geometry and hyperbolic monopoles', arXiv:1104.2270. To appear in Comm. Math. Phys.
  • [8] Francesco Bottacin, Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math. 121 (1995), no. 2, 421-436. MR 1346215 (96i:14009), https://doi.org/10.1007/BF01884307
  • [9] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870 (98g:14012)
  • [10] J. C. Hurtubise and E. Markman, Surfaces and the Sklyanin bracket, Comm. Math. Phys. 230 (2002), no. 3, 485-502. MR 1937654 (2003i:14057), https://doi.org/10.1007/s00220-002-0700-9
  • [11] J. C. Hurtubise and E. Markman, Elliptic Sklyanin integrable systems for arbitrary reductive groups, Adv. Theor. Math. Phys. 6 (2002), no. 5, 873-978 (2003). MR 1974589 (2005c:37104)
  • [12] Diane Maclagan and Gregory G. Smith, Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math. 571 (2004), 179-212. MR 2070149 (2005g:13027), https://doi.org/10.1515/crll.2004.040
  • [13] J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, pp. 147-188. MR 609560 (82j:58064)
  • [14] Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or $ K3$ surface, Invent. Math. 77 (1984), no. 1, 101-116. MR 751133 (85j:14016), https://doi.org/10.1007/BF01389137
  • [15] Michael K. Murray and Michael A. Singer, On the complete integrability of the discrete Nahm equations, Comm. Math. Phys. 210 (2000), no. 2, 497-519. MR 1776842 (2001i:53038), https://doi.org/10.1007/s002200050789
  • [16] Daniel Quillen, Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 194, 163-198. MR 1634734 (2000b:14037), https://doi.org/10.1093/qjmath/49.194.163
  • [17] G. Sanguinetti and N. M. J. Woodhouse, The geometry of dual isomonodromic deformations, J. Geom. Phys. 52 (2004), no. 1, 44-56. MR 2085662 (2005d:37123), https://doi.org/10.1016/j.geomphys.2004.01.005
  • [18] A. N. Tyurin, Symplectic structures on the moduli spaces of vector bundles on algebraic surfaces with $ p_g>0$, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 813-852, 896 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 139-177. MR 966986 (90a:14020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14F05, 14H40, 14H70, 22E67, 37K10

Retrieve articles in all journals with MSC (2010): 14F05, 14H40, 14H70, 22E67, 37K10


Additional Information

Roger Bielawski
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Address at time of publication: Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Email: R.Bielawski@ed.ac.uk

Lorenz Schwachhöfer
Affiliation: Fakultät für Mathematik, TU Dortmund, D-44221 Dortmund, Germany

DOI: https://doi.org/10.1090/S0002-9939-2013-11706-5
Received by editor(s): September 17, 2011
Received by editor(s) in revised form: February 9, 2012
Published electronically: August 20, 2013
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society