Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A remark on invariant subspaces of positive operators


Author: Vladimir G. Troitsky
Journal: Proc. Amer. Math. Soc. 141 (2013), 4345-4348
MSC (2010): Primary 47B65; Secondary 47A15
DOI: https://doi.org/10.1090/S0002-9939-2013-11709-0
Published electronically: August 28, 2013
MathSciNet review: 3105876
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ S$, $ T$, $ R$, and $ K$ are non-zero positive operators on a Banach lattice such that $ S\leftrightarrow T\leftrightarrow R\le K$, where `` $ \leftrightarrow $'' stands for the commutation relation, $ T$ is non-scalar, and $ K$ is compact, then $ S$ has an invariant subspace.


References [Enhancements On Off] (What's this?)

  • [AA02] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. MR 1921782 (2003h:47072)
  • [AAB93] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces of operators on $ l_p$-spaces, J. Funct. Anal. 115 (1993), no. 2, 418-424. MR 1234398 (94h:47009), https://doi.org/10.1006/jfan.1993.1097
  • [AAB94] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspace theorems for positive operators, J. Funct. Anal. 124 (1994), no. 1, 95-111. MR 1284604 (95e:47006), https://doi.org/10.1006/jfan.1994.1099
  • [AB06] Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133
  • [AT05] Razvan Anisca and Vladimir G. Troitsky, Minimal vectors of positive operators, Indiana Univ. Math. J. 54 (2005), no. 3, 861-872. MR 2151236 (2006c:47041), https://doi.org/10.1512/iumj.2005.54.2544
  • [ÇE07] M. Çağlar and Z. Ercan, Invariant subspaces for positive operators on locally convex solid Riesz spaces, Indag. Math. (N.S.) 18 (2007), no. 3, 417-420. MR 2373689 (2008k:47012), https://doi.org/10.1016/S0019-3577(07)80030-9
  • [ÇM11] Mert Çağlar and Tunç Mısırlıoğlu, A note on a problem of Abramovich, Aliprantis and Burkinshaw, Positivity 15 (2011), no. 3, 473-480. MR 2832600, https://doi.org/10.1007/s11117-010-0096-2
  • [DK11] Roman Drnovšek and Marko Kandić, More on positive commutators, J. Math. Anal. Appl. 373 (2011), no. 2, 580-584. MR 2720706 (2011j:47123), https://doi.org/10.1016/j.jmaa.2010.07.056
  • [Drn01] Roman Drnovšek, Common invariant subspaces for collections of operators, Integral Equations Operator Theory 39 (2001), no. 3, 253-266. MR 1818060 (2001m:47012), https://doi.org/10.1007/BF01332655
  • [FTT08] Julio Flores, Pedro Tradacete, and Vladimir G. Troitsky, Invariant subspaces of positive strictly singular operators on Banach lattices, J. Math. Anal. Appl. 343 (2008), no. 2, 743-751. MR 2401530 (2009c:47008), https://doi.org/10.1016/j.jmaa.2008.01.067
  • [FV09] A. Fernández Valles, Invariant ideals for uniform joint locally quasinilpotent operators, Rocky Mountain J. Math. 39 (2009), no. 5, 1699-1712. MR 2546660 (2010i:47064), https://doi.org/10.1216/RMJ-2009-39-5-1699
  • [Ges09] Hailegebriel E. Gessesse, Invariant subspaces of super left-commutants, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1357-1361. MR 2465659 (2009i:47017), https://doi.org/10.1090/S0002-9939-08-09673-1
  • [IM04] Maria Cristina Isidori and Anna Martellotti, Invariant subspaces for compact-friendly operators in Sobolev spaces, Positivity 8 (2004), no. 2, 109-122. MR 2097082 (2005m:47083), https://doi.org/10.1023/B:POST.0000042839.07106.d6
  • [Lom73] V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55-56 (Russian). MR 0420305 (54 #8319)
  • [PT09] Alexey I. Popov and Vladimir G. Troitsky, A version of Lomonosov's theorem for collections of positive operators, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1793-1800. MR 2470839 (2010j:47008), https://doi.org/10.1090/S0002-9939-08-09775-X
  • [Sir05] Gleb Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach spaces, Indiana Univ. Math. J. 54 (2005), no. 1, 257-262. MR 2126724 (2006f:47007), https://doi.org/10.1512/iumj.2005.54.2561

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B65, 47A15

Retrieve articles in all journals with MSC (2010): 47B65, 47A15


Additional Information

Vladimir G. Troitsky
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G2G1, Canada
Email: troitsky@ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-2013-11709-0
Keywords: Positive operators, invariant subspaces
Received by editor(s): December 1, 2011
Received by editor(s) in revised form: February 8, 2012, and February 19, 2012
Published electronically: August 28, 2013
Additional Notes: The author was supported by NSERC
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society