Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Refined bounds for the eigenvalues of the Klein-Gordon operator


Author: Türkay Yolcu
Journal: Proc. Amer. Math. Soc. 141 (2013), 4305-4315
MSC (2010): Primary 35P15; Secondary 35P20
DOI: https://doi.org/10.1090/S0002-9939-2013-11806-X
Published electronically: August 14, 2013
MathSciNet review: 3105872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this article is twofold. First we establish sharper lower bounds for the sums of eigenvalues of $ (-\Delta )^{\frac {1}{2}}\vert _{D},$ the Klein-Gordon operator restricted to a bounded domain $ D\subset {\mathbb{R}}^d,$ than the bounds obtained in works by E. Harrell; S. Yıldırım Yolcu; and G. Wei, H. Sun, and L. Zeng. Then we study upper bounds for the sums of negative powers of the eigenvalues of $ (-\Delta )^{\frac {1}{2}}\vert _{D}.$


References [Enhancements On Off] (What's this?)

  • [1] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167 (Russian). MR 0350504 (50 #2996)
  • [2] R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math. 9 (1959), 399-408. MR 0107298 (21 #6023)
  • [3] Evans M. Harrell II and Selma Yıldırım Yolcu, Eigenvalue inequalities for Klein-Gordon operators, J. Funct. Anal. 256 (2009), no. 12, 3977-3995. MR 2521917 (2010e:35198), https://doi.org/10.1016/j.jfa.2008.12.008
  • [4] Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309-318. MR 701919 (84k:58225)
  • [5] Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225 (2001i:00001)
  • [6] Antonios D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003), no. 2, 631-636 (electronic). MR 1933356 (2003i:35218), https://doi.org/10.1090/S0002-9939-02-06834-X
  • [7] Selma Yildirim Yolcu, An improvement to a Berezin-Li-Yau type inequality, Proc. Amer. Math. Soc. 138 (2010), no. 11, 4059-4066. MR 2679626 (2011m:35255), https://doi.org/10.1090/S0002-9939-2010-10419-7
  • [8] S. Yıldırım Yolcu and T. Yolcu, Estimates on the eigenvalues of the clamped plate problem on domains in Euclidean spaces, J. Math. Phys. 54 (2013), no. 4, 043515, DOI 10.1063/1.4801446.
  • [9] Selma Yildirim Yolcu and Türkay Yolcu, Bounds for the eigenvalues of the fractional Laplacian, Rev. Math. Phys. 24 (2012), no. 3, 1250003, 18. MR 2902846, https://doi.org/10.1142/S0129055X12500031
  • [10] S. Yıldırım Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Comm. Contemp. Math. 15 (2013), no. 3, 1250048, DOI 10.1142/S0219199712500484.
  • [11] Selma Yıldırım Yolcu and Türkay Yolcu, Multidimensional lower bounds for the eigenvalues of Stokes and Dirichlet Laplacian operators, J. Math. Phys. 53 (2012), no. 4, 043508, 17. MR 2953152, https://doi.org/10.1063/1.3701978
  • [12] G. Wei, H. J. Sun, L. Zeng, Lower bounds for Laplacian and fractional Laplacian eigenvalues, preprint, 2011, http://arxiv.org/abs/1112.4571.
  • [13] V. Vougalter, Sharp semiclassical bounds for the moments of eigenvalues for some Schroedinger type operators with unbounded potentials, preprint, (2011), http://www.ma.utexas.edu/mp_arc/c/11/11-155.pdf.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35P15, 35P20

Retrieve articles in all journals with MSC (2010): 35P15, 35P20


Additional Information

Türkay Yolcu
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Address at time of publication: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106
Email: tyolcu@math.purdue.edu, tyolcu@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2013-11806-X
Keywords: Berezin-Li-Yau, counting function, eigenvalue, inequality, Klein-Gordon
Received by editor(s): February 6, 2012
Published electronically: August 14, 2013
Communicated by: Michael Hitrik
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society