Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spiders and multiplicity sequences


Authors: Shreeram S. Abhyankar and Ignacio Luengo
Journal: Proc. Amer. Math. Soc. 141 (2013), 4071-4085
MSC (2010): Primary 14A05
DOI: https://doi.org/10.1090/S0002-9939-2013-12025-3
Published electronically: August 30, 2013
MathSciNet review: 3105852
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spider principle is used for establishing a formula for a
finite quadratic sequence which determines the multiplicity sequences of all the sprouts which are founded upon the given finite quadratic sequence. This formula is basic for the theories of curvettes and dicriticals.


References [Enhancements On Off] (What's this?)

  • [Ab1] Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348. MR 0082477 (18,556b)
  • [Ab2] Shreeram Abhyankar, Ramification theoretic methods in algebraic geometry, Annals of Mathematics Studies, no. 43, Princeton University Press, Princeton, N.J., 1959. MR 0105416 (21 #4158)
  • [Ab3] S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523 (99c:14021)
  • [Ab4] Shreeram S. Abhyankar, Historical ramblings in algebraic geometry and related algebra, Amer. Math. Monthly 83 (1976), no. 6, 409-448. MR 0401754 (53 #5581)
  • [Ab5] Shreeram S. Abhyankar, Desingularization of plane curves, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 1-45. MR 713043 (85d:14024)
  • [Ab6] Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, RI, 1990. MR 1075991 (92a:14001)
  • [Ab7] Shreeram S. Abhyankar, Polynomial expansion, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1583-1596. MR 1443142 (98g:12003), https://doi.org/10.1090/S0002-9939-98-04183-5
  • [Ab8] S. S. Abhyankar, Lectures on Algebra. I, World Scientific, 2006. MR 2253320 (2007k:13001)
  • [Ab9] Shreeram S. Abhyankar, Inversion and invariance of characteristic terms: Part I, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, 2010, pp. 93-168. MR 2744259 (2012b:14057), https://doi.org/10.1007/978-1-4419-6263-8_8
  • [Ab10] Shreeram S. Abhyankar, Dicritical divisors and Jacobian problem, Indian J. Pure Appl. Math. 41 (2010), no. 1, 77-97. MR 2650101 (2011d:14107), https://doi.org/10.1007/s13226-010-0017-x
  • [Ab11] Shreeram S. Abhyankar, Pillars and towers of quadratic transformations, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3067-3082. MR 2811263 (2012f:14003), https://doi.org/10.1090/S0002-9939-2011-10731-7
  • [Ab12] Shreeram S. Abhyankar, More about dicriticals, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3083-3097. MR 2811264 (2012d:13047), https://doi.org/10.1090/S0002-9939-2011-10732-9
  • [Ab13] Shreeram S. Abhyankar, Quadratic transforms inside their generic incarnations, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4111-4126. MR 2957201, https://doi.org/10.1090/S0002-9939-2012-11583-7
  • [Ab14] S. S. Abhyankar, Dicritical divisors and Dedekind's Gauss lemma, Proc. Amer. Math. Soc., to appear.
  • [AA1] S. S. Abhyankar and E. Artal Bartolo, Curvettes and dicritical divisors, Proc. Amer. Math. Soc., to appear.
  • [AH1] Shreeram S. Abhyankar and William J. Heinzer, Existence of dicritical divisors, Amer. J. Math. 134 (2012), no. 1, 171-192. MR 2876143, https://doi.org/10.1353/ajm.2012.0002
  • [AH2] Shreeram S. Abhyankar and William J. Heinzer, Existence of dicritical divisors revisited, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no. 3, 267-290. MR 2867982 (2012h:14148), https://doi.org/10.1007/s12044-011-0035-6
  • [AL1] Shreeram S. Abhyankar and Ignacio Luengo, Algebraic theory of dicritical divisors, Amer. J. Math. 133 (2011), no. 6, 1713-1732. MR 2863374, https://doi.org/10.1353/ajm.2011.0045
  • [Art] E. Artal-Bartolo, Une démonstration géométrique du théorème d'Abhyankar-Moh, J. Reine Angew. Math. 464 (1995), 97-108 (French). MR 1340336 (96k:14008), https://doi.org/10.1515/crll.1995.464.97

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14A05

Retrieve articles in all journals with MSC (2010): 14A05


Additional Information

Shreeram S. Abhyankar
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: ram@cs.purdue.edu

Ignacio Luengo
Affiliation: Facultad de Matematicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Email: iluengo@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9939-2013-12025-3
Keywords: Dicritical, multiplicity sequence, spider principle
Received by editor(s): February 1, 2012
Published electronically: August 30, 2013
Additional Notes: The second author was partially supported by MTM2010-21740-C02-01
Communicated by: Lev Borisov
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society