Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The essential normality of $ N_{\underline{\eta}}$-type quotient module of Hardy module on the polydisc


Author: Penghui Wang
Journal: Proc. Amer. Math. Soc. 142 (2014), 151-156
MSC (2010): Primary 47A13, 46H25
DOI: https://doi.org/10.1090/S0002-9939-2013-11890-3
Published electronically: September 4, 2013
MathSciNet review: 3119190
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to study the essential normality of $ N_{\underline {\eta }}$-type quotient modules, generated by $ \{\eta _i(z_i)-\eta _{i+1}(z_{i+1})\,\vert\, i=1,\cdots ,n-1\}$, of the Hardy module over the polydisc for inner functions $ \eta _i$. In 1988, Clark studied the structure of $ N_{\underline {\eta }}$, for which $ \eta _i$ are finite Blaschke products, and as a consequence, $ N_{\underline {\eta }}$ is essentially normal if $ \eta _i$ are finite Blaschke products. In this note, we will prove that to obtain the essential normality of $ N_{\underline \eta }$, the condition that $ \eta _i$ are finite Blaschke products is necessary.


References [Enhancements On Off] (What's this?)

  • [1] Jim Agler and John E. McCarthy, Distinguished varieties, Acta Math. 194 (2005), no. 2, 133-153. MR 2231339 (2007c:47006), https://doi.org/10.1007/BF02393219
  • [2] William Arveson, The Dirac operator of a commuting $ d$-tuple, J. Funct. Anal. 189 (2002), no. 1, 53-79. MR 1887629 (2003a:47014), https://doi.org/10.1006/jfan.2001.3827
  • [3] William Arveson, Quotients of standard Hilbert modules, Trans. Amer. Math. Soc. 359 (2007), no. 12, 6027-6055 (electronic). MR 2336315 (2009i:46101), https://doi.org/10.1090/S0002-9947-07-04209-2
  • [4] Xiaoman Chen and Kunyu Guo, Analytic Hilbert modules, Chapman & Hall/CRC Research Notes in Mathematics, vol. 433, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1988884 (2004d:47024)
  • [5] Douglas N. Clark, Restrictions of $ H^p$ functions in the polydisk, Amer. J. Math. 110 (1988), no. 6, 1119-1152. MR 970122 (90a:46135), https://doi.org/10.2307/2374688
  • [6] Ronald G. Douglas, Essentially reductive Hilbert modules, J. Operator Theory 55 (2006), no. 1, 117-133. MR 2212024 (2007h:47014)
  • [7] Ronald G. Douglas and Vern I. Paulsen, Hilbert modules over function algebras, Pitman Research Notes in Mathematics Series, vol. 217, Longman Scientific & Technical, Harlow, 1989. MR 1028546 (91g:46084)
  • [8] Ronald G. Douglas and Kai Wang, A harmonic analysis approach to essential normality of principal submodules, J. Funct. Anal. 261 (2011), no. 11, 3155-3180. MR 2835994 (2012k:47016), https://doi.org/10.1016/j.jfa.2011.07.021
  • [9] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981. MR 628971 (83g:30037)
  • [10] Kunyu Guo, Defect operators for submodules of $ H_d^2$, J. Reine Angew. Math. 573 (2004), 181-209. MR 2084587 (2005h:47014), https://doi.org/10.1515/crll.2004.059
  • [11] Kunyu Guo and Kai Wang, Essentially normal Hilbert modules and $ K$-homology, Math. Ann. 340 (2008), no. 4, 907-934. MR 2372744 (2009c:47006), https://doi.org/10.1007/s00208-007-0175-2
  • [12] Kunyu Guo and Kai Wang, Essentially normal Hilbert modules and $ K$-homology. II. Quasi-homogeneous Hilbert modules over the two dimensional unit ball, J. Ramanujan Math. Soc. 22 (2007), no. 3, 259-281. MR 2356345 (2008h:47017)
  • [13] Kunyu Guo and Kai Wang, Beurling type quotient modules over the bidisk and boundary representations, J. Funct. Anal. 257 (2009), no. 10, 3218-3238. MR 2568690 (2011j:47026), https://doi.org/10.1016/j.jfa.2009.06.031
  • [14] Kun-yu Guo and Peng-hui Wang, Essentially normal Hilbert modules and $ K$-homology. III. Homogenous quotient modules of Hardy modules on the bidisk, Sci. China Ser. A 50 (2007), no. 3, 387-411. MR 2334557 (2008j:47006), https://doi.org/10.1007/s11425-007-0019-2
  • [15] KunYu Guo and PengHui Wang, Essentially normal Hilbert modules and $ K$-homology IV: quasi-homogenous quotient modules of Hardy module on the polydisks, Sci. China Math. 55 (2012), no. 8, 1613-1626. MR 2955246, https://doi.org/10.1007/s11425-012-4395-x
  • [16] Keiji Izuchi and Rongwei Yang, $ N_\phi $-type quotient modules on the torus, New York J. Math. 14 (2008), 431-457. MR 2443982 (2009j:47018)
  • [17] Orr Moshe Shalit, Stable polynomial division and essential normality of graded Hilbert modules, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 273-289. MR 2776637 (2012e:46120), https://doi.org/10.1112/jlms/jdq054

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A13, 46H25

Retrieve articles in all journals with MSC (2010): 47A13, 46H25


Additional Information

Penghui Wang
Affiliation: School of Mathematics, Shandong University, Jinan 250100, People’s Republic of China
Email: phwang@sdu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2013-11890-3
Received by editor(s): February 21, 2012
Published electronically: September 4, 2013
Additional Notes: This work was supported by the NSFC 11101240, the Excellent Young Scientist Foundation of Shandong Province, and the Independent Innovation Foundations of Shandong University.
Communicated by: Richard Rochberg
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society