Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak type (1,1) estimates for Caffarelli-Calderón generalized maximal operators for semigroups associated with Bessel and Laguerre operators


Authors: J. J. Betancor, A. J. Castro, P. L. De Nápoli, J. C. Fariña and L. Rodríguez-Mesa
Journal: Proc. Amer. Math. Soc. 142 (2014), 251-261
MSC (2010): Primary 42B25; Secondary 44A15, 43A15
DOI: https://doi.org/10.1090/S0002-9939-2013-11950-7
Published electronically: October 1, 2013
MathSciNet review: 3119200
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that the generalized (in the sense of Caffarelli and Calderón) maximal operators associated with heat semigroups for Bessel and Laguerre operators are weak type $ (1,1)$. Our results include other known ones, and our proofs are simpler than the ones for the known special cases.


References [Enhancements On Off] (What's this?)

  • [1] Jorge J. Betancor, Alejandro J. Castro, and Jezabel Curbelo, Harmonic analysis operators associated with multidimensional Bessel operators. Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 5, 945-974. MR 2981019
  • [2] Jorge J. Betancor, Alejandro J. Castro, and Adam Nowak, Calderón-Zygmund operators in the Bessel setting, Monatsh. Math. 167 (2012), no. 3-4, 375-403. MR 2961289, https://doi.org/10.1007/s00605-011-0348-7
  • [3] Jorge J. Betancor, Eleonor Harboure, Adam Nowak, and Beatriz Viviani, Mapping properties of fundamental operators in harmonic analysis related to Bessel operators, Studia Math. 197 (2010), no. 2, 101-140. MR 2600427 (2011b:42083), https://doi.org/10.4064/sm197-2-1
  • [4] Jorge J. Betancor and Krzysztof Stempak, Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform, Tohoku Math. J. (2) 53 (2001), no. 1, 109-129. MR 1808644 (2002b:42035), https://doi.org/10.2748/tmj/1178207534
  • [5] Luis A. Caffarelli and Calixto P. Calderón, Weak type estimates for the Hardy-Littlewood maximal functions, Studia Math. 49 (1973/74), 217-223. MR 0335729 (49 #509)
  • [6] Luis A. Caffarelli and Calixto P. Calderón, On Abel summability of multiple Jacobi series, Colloq. Math. 30 (1974), 277-288. MR 0372525 (51 #8732)
  • [7] Jacek Dziubański, Hardy spaces associated with semigroups generated by Bessel operators with potentials, Houston J. Math. 34 (2008), no. 1, 205-234. MR 2383704 (2009f:42020)
  • [8] R. Macías, C. Segovia, and J. L. Torrea, Heat-diffusion maximal operators for Laguerre semigroups with negative parameters, J. Funct. Anal. 229 (2005), no. 2, 300-316. MR 2182591 (2006g:42025), https://doi.org/10.1016/j.jfa.2005.02.005
  • [9] R. Macías, C. Segovia, and J. L. Torrea, Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup, Studia Math. 172 (2006), no. 2, 149-167. MR 2204961 (2006j:42010), https://doi.org/10.4064/sm172-2-3
  • [10] Benjamin Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. MR 0249917 (40 #3158)
  • [11] Benjamin Muckenhoupt and Elias M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. MR 0199636 (33 #7779)
  • [12] Adam Nowak and Peter Sjögren, Calderón-Zygmund operators related to Jacobi expansions, J. Fourier Anal. Appl. 18 (2012), no. 4, 717-749. MR 2984366
  • [13] Adam Nowak and Peter Sjögren, Weak type $ (1,1)$ estimates for maximal operators associated with various multi-dimensional systems of Laguerre functions, Indiana Univ. Math. J. 56 (2007), no. 1, 417-436. MR 2305941 (2008e:42034), https://doi.org/10.1512/iumj.2007.56.2973
  • [14] José L. Rubio de Francia, Francisco J. Ruiz, and José L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), no. 1, 7-48. MR 859252 (88f:42035), https://doi.org/10.1016/0001-8708(86)90086-1
  • [15] Peter Sjögren, On the maximal function for the Mehler kernel, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 73-82. MR 729346 (85j:35031), https://doi.org/10.1007/BFb0069151
  • [16] Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR 0252961 (40 #6176)
  • [17] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [18] Krzysztof Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 1, 15-18 (French, with English summary). MR 849618 (87k:42013)
  • [19] Krzysztof Stempak, Heat-diffusion and Poisson integrals for Laguerre expansions, Tohoku Math. J. (2) 46 (1994), no. 1, 83-104. MR 1256729 (94m:42070), https://doi.org/10.2748/tmj/1178225803
  • [20] Krzysztof Stempak and José Luis Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443-472. MR 1990533 (2004d:42024), https://doi.org/10.1016/S0022-1236(03)00083-1
  • [21] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110 (96i:33010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B25, 44A15, 43A15

Retrieve articles in all journals with MSC (2010): 42B25, 44A15, 43A15


Additional Information

J. J. Betancor
Affiliation: Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
Email: jbetanco@ull.es

A. J. Castro
Affiliation: Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
Email: ajcastro@ull.es

P. L. De Nápoli
Affiliation: Departamento de Matemática, Universidad de Buenos Aires, e Instituto de Investigaciones Matemáticas, “Luis A. Santaló”, CONICET 1248 Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
Email: pdenapo@dm.uba.ar

J. C. Fariña
Affiliation: Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
Email: jcfarina@ull.es

L. Rodríguez-Mesa
Affiliation: Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
Email: lrguez@ull.es

DOI: https://doi.org/10.1090/S0002-9939-2013-11950-7
Keywords: Maximal operators, Bessel, Laguerre, heat semigroups of operators
Received by editor(s): March 7, 2012
Published electronically: October 1, 2013
Additional Notes: The authors were partially supported by MTM2010/17974
The second author was also supported by an FPU grant from the government of Spain
The third author was also partially supported by CONICET (Argentina) under PIP 1420090100230, by ANPCYT under PICT 01307, and by UBACyT research project 20020090 100067
Dedicated: Dedicated to the memory of our friend Professor Pablo González Vera
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society