Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Length asymptotics in higher Teichmüller theory


Authors: Mark Pollicott and Richard Sharp
Journal: Proc. Amer. Math. Soc. 142 (2014), 101-112
MSC (2010): Primary 20H10, 22E40, 37C30, 37D20, 37D40
DOI: https://doi.org/10.1090/S0002-9939-2013-12059-9
Published electronically: October 2, 2013
MathSciNet review: 3119185
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we recover a recent result of Sambarino by showing that certain length functions arising in higher Teichmüller theory satisfy a prime geodesic theorem analogous to that of Huber in the classical case. We also show that there are more sophisticated distributional and limiting results.


References [Enhancements On Off] (What's this?)

  • [1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110 (36 #7157)
  • [2] Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 0339281 (49 #4041)
  • [3] M. Burger, A. Iozzi and A. Weinhard, Higher Teichmüller spaces: From $ SL(2, \mathbb{R})$ to other Lie groups, preprint, 2011.
  • [4] Suhyoung Choi and William M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), no. 2, 657-661. MR 1145415 (93g:57017), https://doi.org/10.2307/2160352
  • [5] Manfred Denker and Walter Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 541-552. MR 779712 (86g:28025), https://doi.org/10.1017/S0143385700002637
  • [6] G. Dreyer, Length functions for Hitchin representations, preprint, 2011.
  • [7] William M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557-607. MR 952283 (89m:57001), https://doi.org/10.1007/BF01410200
  • [8] Dennis A. Hejhal, The Selberg trace formula for $ {\rm PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin, 1976. MR 0439755 (55 #12641)
  • [9] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133-163. MR 0271991 (42 #6872)
  • [10] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977. MR 0501173 (58 #18595)
  • [11] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449-473. MR 1174252 (93e:32023), https://doi.org/10.1016/0040-9383(92)90044-I
  • [12] Heinz Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann. 142 (1960/1961), 385-398 (German). MR 0126549 (23 #A3845)
  • [13] Atsushi Katsuda and Toshikazu Sunada, Closed orbits in homology classes, Inst. Hautes Études Sci. Publ. Math. 71 (1990), 5-32. MR 1079641 (92m:58102)
  • [14] Yuri Kifer, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994), no. 1, 33-46. MR 1272765 (95b:58091)
  • [15] François Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1, 51-114. MR 2221137 (2007c:20101), https://doi.org/10.1007/s00222-005-0487-3
  • [16] François Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 437-469 (English, with English and French summaries). MR 2482204 (2010k:53145)
  • [17] S. P. Lalley, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. in Appl. Math. 8 (1987), no. 2, 154-193. MR 886923 (89e:58088), https://doi.org/10.1016/0196-8858(87)90012-1
  • [18] D. D. Long and A. W. Reid, Small subgroups of $ {\rm SL}(3,\mathbb{Z})$, Exp. Math. 20 (2011), no. 4, 412-425. MR 2859899 (2012k:57002), https://doi.org/10.1080/10586458.2011.565258
  • [19] Darren D. Long, Alan W. Reid, and Morwen Thistlethwaite, Zariski dense surface subgroups in $ {\rm SL}(3,\mathbf {Z})$, Geom. Topol. 15 (2011), no. 1, 1-9. MR 2764111 (2012a:22016), https://doi.org/10.2140/gt.2011.15.1
  • [20] William Parry, Synchronisation of canonical measures for hyperbolic attractors, Comm. Math. Phys. 106 (1986), no. 2, 267-275. MR 855312 (88b:58088)
  • [21] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356 (92f:58141)
  • [22] M. Ratner, Markov partitions for Anosov flows on $ n$-dimensional manifolds, Israel J. Math. 15 (1973), 92-114. MR 0339282 (49 #4042)
  • [23] M. Ratner, The central limit theorem for geodesic flows on $ n$-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181-197. MR 0333121 (48 #11446)
  • [24] A. Sambarino, Quelques aspects des représentations linéaires des groupes hyperboliques, PhD Thesis, Paris Nord, 2011.
  • [25] A. Sambarino, Quantitative properties of convex representations, preprint, 2011.
  • [26] S. V. Savchenko, Homological inequalities for finite topological Markov chains, Funktsional. Anal. i Prilozhen. 33 (1999), no. 3, 91-93 (Russian); English transl., Funct. Anal. Appl. 33 (1999), no. 3, 236-238 (2000). MR 1724277 (2001h:37007), https://doi.org/10.1007/BF02465212
  • [27] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87. MR 0088511 (19,531g)
  • [28] Richard Sharp, Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynam. Systems 13 (1993), no. 2, 387-408. MR 1235480 (94g:58169), https://doi.org/10.1017/S0143385700007434

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20H10, 22E40, 37C30, 37D20, 37D40

Retrieve articles in all journals with MSC (2010): 20H10, 22E40, 37C30, 37D20, 37D40


Additional Information

Mark Pollicott
Affiliation: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: mpollic@maths.warwick.ac.uk

Richard Sharp
Affiliation: School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
Address at time of publication: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: R.J.Sharp@warwick.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2013-12059-9
Received by editor(s): March 8, 2012
Published electronically: October 2, 2013
Communicated by: Nimish Shah
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society