Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cobordisms to weakly splittable links


Authors: Stefan Friedl and Mark Powell
Journal: Proc. Amer. Math. Soc. 142 (2014), 703-712
MSC (2010): Primary 57M25, 57M27, 57N70
DOI: https://doi.org/10.1090/S0002-9939-2013-11792-2
Published electronically: November 4, 2013
MathSciNet review: 3134010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if a link $ L$ with a non-zero Alexander polynomial admits a locally flat cobordism to a `weakly $ m$-split link', then the cobordism must have genus at least $ \lfloor \frac {m}{2}\rfloor $. This generalises a recent result of J. Pardon.


References [Enhancements On Off] (What's this?)

  • [COT03] Tim D. Cochran, Kent E. Orr, and Peter Teichner, Knot concordance, Whitney towers and $ L^2$-signatures, Ann. of Math. (2) 157 (2003), no. 2, 433-519. MR 1973052 (2004i:57003), https://doi.org/10.4007/annals.2003.157.433
  • [COT04] Tim D. Cochran, Kent E. Orr, and Peter Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004), no. 1, 105-123. MR 2031301 (2004k:57005), https://doi.org/10.1007/s00014-001-0793-6
  • [Gr10] Joshua Greene, Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010), no. 1, 39-49. MR 2592726 (2011e:57007)
  • [Ka78] Akio Kawauchi, On the Alexander polynomials of cobordant links, Osaka J. Math. 15 (1978), no. 1, 151-159. MR 0488022 (58 #7599)
  • [Ka96] Akio Kawauchi, Distance between links by zero-linking twists, Kobe J. Math. 13 (1996), no. 2, 183-190. MR 1442205 (99b:57013)
  • [Kh00] Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359-426. MR 1740682 (2002j:57025), https://doi.org/10.1215/S0012-7094-00-10131-7
  • [Kh03] Mikhail Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003), no. 3, 365-374. MR 2034399 (2004m:57022)
  • [MO08] Ciprian Manolescu and Peter Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 60-81. MR 2509750 (2010k:57029)
  • [OS05] Peter Ozsváth and Zoltán Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1-33. MR 2141852 (2006e:57041), https://doi.org/10.1016/j.aim.2004.05.008
  • [Pa11] J. Pardon, The link concordance invariant from Lee homology, Alg. Geom. Topol. 12 (2012), no. 2, 1081-1098. MR 2928905
  • [Ra10] Jacob Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419-447. MR 2729272 (2011k:57020), https://doi.org/10.1007/s00222-010-0275-6
  • [Wa08] L. Watson, Surgery obstructions from Khovanov homology, Selecta Mathematica (N.S.) 18 (2012), no. 2, 417-472. MR 2927239

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M25, 57M27, 57N70

Retrieve articles in all journals with MSC (2010): 57M25, 57M27, 57N70


Additional Information

Stefan Friedl
Affiliation: Mathematisches Institut, Universität zu Köln, Köln, Germany
Email: sfriedl@gmail.com

Mark Powell
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: macp@indiana.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11792-2
Received by editor(s): December 20, 2011
Received by editor(s) in revised form: March 26, 2012
Published electronically: November 4, 2013
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society