Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Some remarks on the Jacobian conjecture and polynomial endomorphisms


Authors: Dan Yan and Michiel de Bondt
Journal: Proc. Amer. Math. Soc. 142 (2014), 391-400
MSC (2010): Primary 14E05; Secondary 14A05, 14R15
DOI: https://doi.org/10.1090/S0002-9939-2013-11798-3
Published electronically: October 30, 2013
MathSciNet review: 3133981
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we first show that homogeneous Keller maps are injective on lines through the origin. We subsequently formulate a generalization which states that under some conditions, a polynomial endomorphism with $ r$ homogeneous parts of positive degree does not have $ r$ times the same image point on a line through the origin, in case its Jacobian determinant does not vanish anywhere on that line. As a consequence, a Keller map of degree $ r$ does not take the same values on $ r > 1$ collinear points, provided $ r$ is a unit in the base field.

Next, we show that for invertible maps $ x + H$ of degree $ d$ such that $ \ker \mathcal {J} H$ has $ n-r$ independent vectors over the base field, in particular for invertible power linear maps $ x + (Ax)^{*d}$ with $ \operatorname {rk} A = r$, the degree of the inverse of $ x + H$ is at most $ d^r$.


References [Enhancements On Off] (What's this?)

  • [BCW] Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287-330. MR 663785 (83k:14028), https://doi.org/10.1090/S0273-0979-1982-15032-7
  • [BbRo] Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. MR 0140516 (25 #3936)
  • [dBvdE] Michiel de Bondt and Arno van den Essen, The Jacobian conjecture: linear triangularization for homogeneous polynomial maps in dimension three, J. Algebra 294 (2005), no. 1, 294-306. MR 2179727 (2006g:14100), https://doi.org/10.1016/j.jalgebra.2005.04.018
  • [dB] M.C. de Bondt, Homogeneous Keller maps. PhD. thesis, Radboud University, Nijmegen, 2009. +http://webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf+
  • [Che1] Charles Ching-An Cheng, Quadratic linear Keller maps, Linear Algebra Appl. 348 (2002), 203-207. MR 1902126 (2003c:14071), https://doi.org/10.1016/S0024-3795(01)00582-1
  • [Che2] Charles Ching-An Cheng, Power linear Keller maps of rank two are linearly triangularizable, J. Pure Appl. Algebra 195 (2005), no. 2, 127-130. MR 2108467 (2005h:14143), https://doi.org/10.1016/j.jpaa.2004.06.003
  • [CvdD] E. Connell and L. van den Dries, Injective polynomial maps and the Jacobian conjecture, J. Pure Appl. Algebra 28 (1983), no. 3, 235-239. MR 701351 (84m:13006), https://doi.org/10.1016/0022-4049(83)90094-4
  • [CyRus] Sławomir Cynk and Kamil Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), no. 1, 29-35. MR 1145567 (93d:14025)
  • [vdDmK] Ken McKenna and Lou van den Dries, Surjective polynomial maps, and a remark on the Jacobian problem, Manuscripta Math. 67 (1990), no. 1, 1-15. MR 1037991 (91b:12012), https://doi.org/10.1007/BF02568417
  • [Dru1] Ludwik M. Drużkowski, An effective approach to Keller's Jacobian conjecture, Math. Ann. 264 (1983), no. 3, 303-313. MR 714105 (85b:14015a), https://doi.org/10.1007/BF01459126
  • [Dru2] Ludwik M. Drużkowski, The Jacobian conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), no. 3, 233-244. MR 1210415 (93m:14011), https://doi.org/10.1016/0022-4049(93)90140-O
  • [vdE1] A.R.P. van den Essen, Seven lectures on polynomial automorphisms. Automorphisms of affine spaces (Curaçao, 1994), 3-39, Kluwer Acad. Publ., Dordrecht, 1995.
  • [vdE2] Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000. MR 1790619 (2001j:14082)
  • [vdE3] A.R.P. van den Essen, The amazing image conjecture. +http://arxiv.org/abs/+
    +1006.5801+
  • [GZ] Gianluca Gorni and Gaetano Zampieri, On cubic-linear polynomial mappings, Indag. Math. (N.S.) 8 (1997), no. 4, 471-492. MR 1621913 (99e:14016), https://doi.org/10.1016/S0019-3577(97)81552-2
  • [Gro] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 0173675 (30 #3885)
  • [Gwo] Janusz Gwoździewicz, Injectivity on one line, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 15 (1993), no. 1-10, 59-60 (English, with English and Polish summaries). MR 1280980 (95f:14024)
  • [Kel] Ott-Heinrich Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), no. 1, 299-306 (German). MR 1550818, https://doi.org/10.1007/BF01695502
  • [MO] Gary H. Meisters and Czesław Olech, Strong nilpotence holds in dimensions up to five only, Linear and Multilinear Algebra 30 (1991), no. 4, 231-255. MR 1129181 (92i:15009), https://doi.org/10.1080/03081089108818109
  • [Pin] Sergey Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), no. 1, 1-4. MR 1292168 (95g:14018), https://doi.org/10.1007/BF02571929
  • [Rud] Walter Rudin, Injective polynomial maps are automorphisms, Amer. Math. Monthly 102 (1995), no. 6, 540-543. MR 1336641 (96e:14015), https://doi.org/10.2307/2974770
  • [Rus] Kamil Rusek, Polynomial automorphisms of $ {\bf C}^n$, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 2 (1984), 83-85 (Polish). MR 788145 (86i:14004)
  • [TdB] He Tong and Michiel de Bondt, Power linear Keller maps with ditto triangularizations, J. Algebra 312 (2007), no. 2, 930-945. MR 2333192 (2008d:14097), https://doi.org/10.1016/j.jalgebra.2006.08.039
  • [Wan] Stuart Sui Sheng Wang, A generalization of a lemma of Abhyankar and Moh, J. Pure Appl. Algebra 40 (1986), no. 3, 297-299. MR 836655 (87k:13008a), https://doi.org/10.1016/0022-4049(86)90048-4
  • [Yag] A. V. Jagžev, On a problem of O.-H. Keller, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141-150, 191 (Russian). MR 592226 (82e:14020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14E05, 14A05, 14R15

Retrieve articles in all journals with MSC (2010): 14E05, 14A05, 14R15


Additional Information

Dan Yan
Affiliation: School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Email: yan-dan-hi@163.com

Michiel de Bondt
Affiliation: Department of Mathematics, Radboud University, Nijmegen, The Netherlands
Email: M.deBondt@math.ru.nl

DOI: https://doi.org/10.1090/S0002-9939-2013-11798-3
Keywords: Jacobian conjecture, polynomial map, Dru{\.z}kowski map
Received by editor(s): March 9, 2012
Received by editor(s) in revised form: March 15, 2012, and March 23, 2012
Published electronically: October 30, 2013
Additional Notes: The second author was supported by the Netherlands Organisation for Scientific Research (NWO)
Communicated by: Lev Borisov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society