Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On sums of admissible coadjoint orbits


Authors: Alimjon Eshmatov and Philip Foth
Journal: Proc. Amer. Math. Soc. 142 (2014), 727-735
MSC (2010): Primary 58E40; Secondary 53D20
DOI: https://doi.org/10.1090/S0002-9939-2013-11799-5
Published electronically: November 14, 2013
MathSciNet review: 3134012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a quasi-Hermitian semisimple Lie algebra, we describe possible spectra of the sum of two admissible elements from its dual vector space.


References [Enhancements On Off] (What's this?)

  • [1] L. Bates and E. Lerman, Proper group actions and symplectic stratified spaces, Pacific J. Math. 181 (1997), no. 2, 201-229. MR 1486529 (98i:58085), https://doi.org/10.2140/pjm.1997.181.201
  • [2] William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209-249 (electronic). MR 1754641 (2001g:15023), https://doi.org/10.1090/S0273-0979-00-00865-X
  • [3] Victor Guillemin and Reyer Sjamaar, Convexity properties of Hamiltonian group actions, CRM Monograph Series, vol. 26, American Mathematical Society, Providence, RI, 2005. MR 2175783 (2007c:53119)
  • [4] Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990. MR 1066693 (91d:58073)
  • [5] Joachim Hilgert, Karl-Hermann Neeb, and Werner Plank, Symplectic convexity theorems and coadjoint orbits, Compositio Math. 94 (1994), no. 2, 129-180. MR 1302314 (96d:53053)
  • [6] Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston Inc., Boston, MA, 2002. MR 1920389 (2003c:22001)
  • [7] Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000. MR 1740617 (2001j:32020)
  • [8] Juan-Pablo Ortega and Tudor S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston Inc., Boston, MA, 2004. MR 2021152 (2005a:53144)
  • [9] Joe Repka, Tensor products of holomorphic discrete series representations, Canad. J. Math. 31 (1979), no. 4, 836-844. MR 540911 (82c:22017), https://doi.org/10.4153/CJM-1979-079-9
  • [10] Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46-91. MR 1645052 (2000a:53148), https://doi.org/10.1006/aima.1998.1739
  • [11] Alan Weinstein, Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions, Lett. Math. Phys. 56 (2001), no. 1, 17-30. EuroConférence Moshé Flato 2000, Part I (Dijon). MR 1848163 (2002m:53130), https://doi.org/10.1023/A:1010913023218

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58E40, 53D20

Retrieve articles in all journals with MSC (2010): 58E40, 53D20


Additional Information

Alimjon Eshmatov
Affiliation: Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089
Email: alimjon@math.arizona.edu

Philip Foth
Affiliation: Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089
Email: foth@math.arizona.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11799-5
Keywords: Convexity, quasi-Hermitian, admissible, symplectic, moment map
Received by editor(s): August 27, 2011
Received by editor(s) in revised form: March 31, 2012
Published electronically: November 14, 2013
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society