Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Euler characteristics of universal cotangent line bundles on $ \overline{\mathcal{M}}_{1,n}$


Authors: Y.-P. Lee and F. Qu
Journal: Proc. Amer. Math. Soc. 142 (2014), 429-440
MSC (2010): Primary 14H10; Secondary 14J15, 14D23, 14D22, 14H15
DOI: https://doi.org/10.1090/S0002-9939-2013-11800-9
Published electronically: November 5, 2013
MathSciNet review: 3133985
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an effective algorithm to compute the Euler characteristics $ \chi (\overline {\mathcal {M}}_{1,n}, \bigotimes _{i=1}^n L_i^{ d_i})$. This work is a sequel to the 1997 work of the first author.

In addition, we give a simple proof of Pandharipande's vanishing theorem $ H^j (\overline {\mathcal {M}}_{0,n}, \bigotimes _{i=1}^n L_i^{ d_i})=0$ for $ j \ge 1, d_i \ge 0$.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337-1398. MR 2450211 (2009k:14108), https://doi.org/10.1353/ajm.0.0017
  • [2] Alexander Givental, On the WDVV equation in quantum $ K$-theory, Michigan Math. J. 48 (2000), 295-304. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786492 (2001m:14078), https://doi.org/10.1307/mmj/1030132720
  • [3] Alexander Givental and Yuan-Pin Lee, Quantum $ K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), no. 1, 193-219. MR 1943747 (2004g:14063), https://doi.org/10.1007/s00222-002-0250-y
  • [4] A. Givental, V. Tonita, The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory, arXiv:1106.3136.
  • [5] M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $ \overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239-262. MR 1203685 (94a:14024)
  • [6] Tetsuro Kawasaki, The Riemann-Roch theorem for complex $ V$-manifolds, Osaka J. Math. 16 (1979), no. 1, 151-159. MR 527023 (80f:58042)
  • [7] Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry--Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259-271. MR 2483938 (2011c:14006)
  • [8] Yuan-Pin Lee, A formula for Euler characteristics of tautological line bundles on the Deligne-Mumford moduli spaces, Internat. Math. Res. Notices 8 (1997), 393-400. MR 1443318 (97m:14028), https://doi.org/10.1155/S1073792897000263
  • [9] Y.-P. Lee, Quantum $ K$-theory. I. Foundations, Duke Math. J. 121 (2004), no. 3, 389-424. MR 2040281 (2005f:14107), https://doi.org/10.1215/S0012-7094-04-12131-1
  • [10] N. Pagani, Chen-Ruan Cohomology of $ \mathcal {M}_{1,n}$ and $ \overline {\mathcal {M}}_{1,n}$, to appear in Ann. Inst. Fourier (Grenoble) 63 (2013).
  • [11] Rahul Pandharipande, The symmetric function $ h^0(\overline M_{0,n},\mathcal {L}^{x_1}_1\otimes \mathcal {L}^{x_2}_2\otimes \cdots \otimes \mathcal {L}^{x_n}_n)$, J. Algebraic Geom. 6 (1997), no. 4, 721-731. MR 1487233 (98m:14026)
  • [12] B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, $ K$-Theory 18 (1999), no. 1, 33-76 (French, with English and French summaries). MR 1710187 (2000h:14010), https://doi.org/10.1023/A:1007791200714
  • [13] Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), no. 1, 1-81. MR 2578300 (2011c:14147), https://doi.org/10.2140/gt.2010.14.1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14H10, 14J15, 14D23, 14D22, 14H15

Retrieve articles in all journals with MSC (2010): 14H10, 14J15, 14D23, 14D22, 14H15


Additional Information

Y.-P. Lee
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
Email: yplee@math.utah.edu

F. Qu
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
Email: qu@math.utah.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11800-9
Received by editor(s): December 29, 2011
Received by editor(s) in revised form: March 27, 2012
Published electronically: November 5, 2013
Additional Notes: This project was partially supported by the NSF
Communicated by: Lev Borisov
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society