Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Lie inner ideals are nearly Jordan inner ideals


Author: Antonio Fernández López
Journal: Proc. Amer. Math. Soc. 142 (2014), 795-804
MSC (2010): Primary 17B60, 17C50; Secondary 16N60
DOI: https://doi.org/10.1090/S0002-9939-2013-11809-5
Published electronically: December 4, 2013
MathSciNet review: 3148514
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we extend the Lie inner ideal structure of simple Artinian rings developed by Benkart to centrally closed prime algebras $ A$. New Lie inner ideals, which we call nonstandard, occur when making this extension. A necessary and sufficient condition for $ A$ to have a nonstandard inner ideal is the existence in $ A$ of a zero square element which is not von Neumann regular. Our main tool is a theorem due to Martindale and Miers on the iterates of the derivations of prime rings.


References [Enhancements On Off] (What's this?)

  • [1] K.I. Beidar, W.S. Martindale and A.V. Mikhalev, Rings with Generalized Identities. Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.MR 1368853 (97g:16035)
  • [2] Georgia Benkart, The Lie inner ideal structure of associative rings, J. Algebra 43 (1976), no. 2, 561-584. MR 0435149 (55 #8110)
  • [3] Georgia Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc. 232 (1977), 61-81. MR 0466242 (57 #6122)
  • [4] Arjeh M. Cohen, Gábor Ivanyos, and Dan Roozemond, Simple Lie algebras having extremal elements, Indag. Math. (N.S.) 19 (2008), no. 2, 177-188. MR 2489325 (2010d:17012), https://doi.org/10.1016/S0019-3577(09)00003-2
  • [5] Cristina Draper, Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The socle of a nondegenerate Lie algebra, J. Algebra 319 (2008), no. 6, 2372-2394. MR 2388311 (2010a:17045), https://doi.org/10.1016/j.jalgebra.2007.10.042
  • [6] C. Draper, A. Fernández López, E. García, and M. Gómez Lozano, The inner ideals of the simple finite dimensional Lie algebras, J. Lie Theory 22 (2012), no 4, 970-929. MR 3052677
  • [7] John R. Faulkner, On the geometry of inner ideals, J. Algebra 26 (1973), 1-9. MR 0367002 (51 #3247)
  • [8] Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The Jordan socle and finitary Lie algebras, J. Algebra 280 (2004), no. 2, 635-654. MR 2089256 (2005i:17007), https://doi.org/10.1016/j.jalgebra.2004.06.013
  • [9] Antonio Fernández López, Esther García, and Miguel Gómez Lozano, Inner ideals of finitary simple Lie algebras, J. Lie Theory 16 (2006), no. 1, 97-114. MR 2196417 (2006m:17020)
  • [10] Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The Jordan algebras of a Lie algebra, J. Algebra 308 (2007), no. 1, 164-177. MR 2290916 (2007k:17049), https://doi.org/10.1016/j.jalgebra.2006.02.035
  • [11] Antonio Fernández López, Esther García, and Miguel Gómez Lozano, An Artinian theory for Lie algebras, J. Algebra 319 (2008), no. 3, 938-951. MR 2379087 (2010a:17046), https://doi.org/10.1016/j.jalgebra.2007.10.038
  • [12] A. Fernández López, E. García, M. Gómez Lozano, and E. Neher, A construction of gradings of Lie algebras, Int. Math. Res. Not. 2007, no. 16, Art. ID rnm051, 34 pp. MR 2353091 (2008j:17057)
  • [13] Antonio Fernández López and Eulalia García Rus, Inner ideals in quadratic Jordan algebras of infinite capacity, Int. J. Math. Game Theory Algebra 9 (1999), no. 1, 35-54. MR 1697472 (2000f:17044)
  • [14] Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin, 1975. MR 0444721 (56 #3071)
  • [15] Ottmar Loos and Erhard Neher, Complementation of inner ideals in Jordan pairs, J. Algebra 166 (1994), no. 2, 255-295. MR 1279257 (95f:17028), https://doi.org/10.1006/jabr.1994.1151
  • [16] W. S. Martindale III and C. Robert Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104 (1983), no. 1, 179-190. MR 683736 (84c:16033)
  • [17] Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445-468. MR 0279145 (43 #4871)
  • [18] A. A. Premet, Lie algebras without strong degeneration, Mat. Sb. (N.S.) 129(171) (1986), no. 1, 140-153 (Russian). MR 830100 (87g:17018)
  • [19] A. A. Premet, Inner ideals in modular Lie algebras, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 5 (1986), 11-15, 123 (Russian, with English summary). MR 876665 (88d:17013)
  • [20] Alexander Premet and Helmut Strade, Simple Lie algebras of small characteristic. I. Sandwich elements, J. Algebra 189 (1997), no. 2, 419-480. MR 1438184 (98e:17029), https://doi.org/10.1006/jabr.1996.6861
  • [21] Oleg N. Smirnov, Simple associative algebras with finite $ \mathbf {Z}$-grading, J. Algebra 196 (1997), no. 1, 171-184. MR 1474168 (98i:16045), https://doi.org/10.1006/jabr.1997.7087
  • [22] Oleg N. Smirnov, Finite $ {\bf Z}$-gradings of Lie algebras and symplectic involutions, J. Algebra 218 (1999), no. 1, 246-275. MR 1704686 (2000f:17034), https://doi.org/10.1006/jabr.1999.7880
  • [23] E. Zelmanov, Lie algebras with finite grading, Math. USSR Sbornik 52 (1985), 347-385 (English translation). MR 0752226 (86d:17016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B60, 17C50, 16N60

Retrieve articles in all journals with MSC (2010): 17B60, 17C50, 16N60


Additional Information

Antonio Fernández López
Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain
Email: emalfer@uma.es

DOI: https://doi.org/10.1090/S0002-9939-2013-11809-5
Keywords: Central closed prime algebra, Jordan-Lie inner ideal
Received by editor(s): November 17, 2011
Received by editor(s) in revised form: April 9, 2012
Published electronically: December 4, 2013
Additional Notes: The author was supported in part by the MEC and Fondos FEDER, MTM2010-19482
Dedicated: Dedicated to Professor Georgia Benkart
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society