Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Rogers-Ramanujan functions, binary quadratic forms and eta-quotients


Authors: Alexander Berkovich and Hamza Yesilyurt
Journal: Proc. Amer. Math. Soc. 142 (2014), 777-793
MSC (2010): Primary 11E16, 11E45, 11F03, 11P84
DOI: https://doi.org/10.1090/S0002-9939-2013-11816-2
Published electronically: December 2, 2013
MathSciNet review: 3148513
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a handwritten manuscript published with his lost notebook, Ramanujan stated without proofs forty identities for the Rogers-Ramanujan functions. We observe that the function that appears in Ramanujan's identities can be obtained from a Hecke action on a certain family of eta products. We establish further Hecke-type relations for these functions involving binary quadratic forms. Our observations enable us to find new identities for the Rogers-Ramanujan functions and also to use such identities in return to find identities involving binary quadratic forms.


References [Enhancements On Off] (What's this?)

  • [1] Alexander Berkovich and Hamza Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, Ramanujan J. 20 (2009), no. 3, 375-408. MR 2574780 (2011b:11051), https://doi.org/10.1007/s11139-009-9215-8
  • [2] Bruce C. Berndt, Ramanujan's notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903 (92j:01069)
  • [3] Bruce C. Berndt and Hamza Yesilyurt, New identities for the Rogers-Ramanujan functions, Acta Arith. 120 (2005), no. 4, 395-413. MR 2190072 (2006j:11139), https://doi.org/10.4064/aa120-4-5
  • [4] B. C. Berndt, G. Choi, Y.-S. Choi, H. Hahn, B. P. Yeap, A. J. Yee, H. Yesilyurt, and J. Yi, Ramanujan's forty identities for the Rogers-Ramanujan functions, Mem.Amer. Math. Soc. 188 (2007), no. 880. MR 2323810 (2008k:11109)
  • [5] Anthony J. F. Biagioli, A proof of some identities of Ramanujan using modular forms, Glasgow Math. J. 31 (1989), no. 3, 271-295. MR 1021804 (90m:11060), https://doi.org/10.1017/S0017089500007850
  • [6] D. M. Bressoud, Some identities involving Rogers-Ramanujan-type functions, J. London Math. Soc. (2) 16 (1977), no. 1, 9-18. MR 0447158 (56 #5473)
  • [7] Kathrin Bringmann and Holly Swisher, On a conjecture of Koike on identities between Thompson series and Rogers-Ramanujan functions, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2317-2326 (electronic). MR 2302552 (2008d:11039), https://doi.org/10.1090/S0002-9939-07-08735-7
  • [8] Erich Hecke, Mathematische Werke, Vandenhoeck&Ruprecht, Göttingen, 1970 (German). Mit einer Vorbemerkung von B. Schoenberg, einer Anmerkung von Carl Ludwig Siegel, und einer Todesanzeige von Jakob Nielsen; Zweite durchgesehene Auflage. MR 0371577 (51 #7795)
  • [9] Masao Koike, Thompson series and Ramanujan's identities, Galois theory and modular forms, Dev. Math., vol. 11, Kluwer Acad. Publ., Boston, MA, 2004, pp. 367-373. MR 2059774 (2005c:11051), https://doi.org/10.1007/978-1-4613-0249-0_20
  • [10] Srinivasa Ramanujan, The lost notebook and other unpublished papers, with an introduction by George E. Andrews, Springer-Verlag, Berlin, 1988. MR 947735 (89j:01078)
  • [11] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. S1-25, no. 1, 318. MR 1576348, https://doi.org/10.1112/plms/s1-25.1.318
  • [12] L. J. Rogers, On a type of modular relation, Proc. London Math. Soc. S2-19, no. 1, 387. MR 1576607, https://doi.org/10.1112/plms/s2-19.1.387
  • [13] G. N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1933), 57-69.
  • [14] Hamza Yesilyurt, Elementary proofs of some identities of Ramanujan for the Rogers-Ramanujan functions, J. Math. Anal. Appl. 388 (2012), no. 1, 420-434. MR 2869757, https://doi.org/10.1016/j.jmaa.2011.11.004
  • [15] Hamza Yesilyurt, A generalization of a modular identity of Rogers, J. Number Theory 129 (2009), no. 6, 1256-1271. MR 2521474 (2011a:33044), https://doi.org/10.1016/j.jnt.2009.01.007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11E16, 11E45, 11F03, 11P84

Retrieve articles in all journals with MSC (2010): 11E16, 11E45, 11F03, 11P84


Additional Information

Alexander Berkovich
Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611
Email: alexb@ufl.edu

Hamza Yesilyurt
Affiliation: Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
Email: hamza@fen.bilkent.edu.tr

DOI: https://doi.org/10.1090/S0002-9939-2013-11816-2
Keywords: Eta-quotients, binary quadratic forms, Rogers--Ramanujan functions, Ramanujan's lost notebook, Thompson series
Received by editor(s): April 7, 2012
Published electronically: December 2, 2013
Additional Notes: The first author’s research was partially supported by grant H98230-09-1-0051 of the National Security Agency
The second author’s research was partially supported by grant 109T669 from Tübitak
Communicated by: Ken Ono
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society