Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tate conjecture for a product of a Shimura curve and a Picard modular surface


Author: Cristian Virdol
Journal: Proc. Amer. Math. Soc. 142 (2014), 827-834
MSC (2010): Primary 11F41, 11F80, 11R42, 11R80
DOI: https://doi.org/10.1090/S0002-9939-2013-11819-8
Published electronically: December 6, 2013
MathSciNet review: 3148517
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the Tate conjecture for a product of a Shimura curve and a Picard modular surface.


References [Enhancements On Off] (What's this?)

  • [BGGT] T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, Potential automorphy and change of weight, preprint.
  • [BGHT] Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29-98. MR 2827723 (2012m:11069), https://doi.org/10.2977/PRIMS/31
  • [BR] Don Blasius and Jonathan D. Rogawski, Tate classes and arithmetic quotients of the two-ball, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 421-444. MR 1155236 (93c:11040)
  • [CR] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1981. MR 632548 (82i:20001)
  • [D] Pierre Deligne, Travaux de Shimura, Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Math., Vol. 244, Springer, Berlin, 1971, pp. 123-165. MR 0498581 (58 #16675).
  • [G] B. Brent Gordon, Canonical models of Picard modular surfaces, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 1-29. MR 1155224 (93a:14023)
  • [HLR] G. Harder, R. P. Langlands, and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53-120 (German). MR 833013 (87k:11066)
  • [L] Robert P. Langlands, Base change for $ {\rm GL}(2)$, Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, NJ, 1980. MR 574808 (82a:10032)
  • [LR] The zeta functions of Picard modular surfaces, edited by Robert P. Langlands and Dinakar Ramakrishnan, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1992. MR 1155223 (92m:14001)
  • [R] Jonathan D. Rogawski, Analytic expression for the number of points mod $ p$, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 65-109. MR 1155227 (93i:11140)
  • [RT] J. D. Rogawski and J. B. Tunnell, On Artin $ L$-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), no. 1, 1-42. MR 722724 (85i:11044), https://doi.org/10.1007/BF01388529
  • [T] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93-110. MR 0225778 (37 #1371)
  • [T1] John Tate, Conjectures on algebraic cycles in $ l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71-83. MR 1265523 (95a:14010)
  • [TA] Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265-280. MR 1016264 (90m:11176), https://doi.org/10.1007/BF01388853

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F41, 11F80, 11R42, 11R80

Retrieve articles in all journals with MSC (2010): 11F41, 11F80, 11R42, 11R80


Additional Information

Cristian Virdol
Affiliation: Department of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Address at time of publication: Department of Mathematics, Room 208, Yonsei University, Seoul 120-749, South Korea
Email: virdol@yonsei.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-2013-11819-8
Received by editor(s): February 5, 2011
Received by editor(s) in revised form: April 15, 2012
Published electronically: December 6, 2013
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society